Spark机器学习环境搭建

标签: spark机器学习scalamaven
2694人阅读 评论(2) 收藏 举报
分类:

一、Spark环境搭建

1.1 下载Spark

下载地址:http://spark.apache.org/downloads.html

这里写图片描述
下载完成后解压即可。
把spark的运行目录加到环境变量:

#Spark Home
export SPARK_HOME=/usr/local/Cellar/spark-2.1.0-bin-hadoop2.7
export PATH=$PATH:$SPARK_HOME/bin

我这里用的是简单的本地单机版,运行计算PI的例子进行测试:

run-example org.apache.spark.examples.SparkPi

如果一切顺利,可以看到以下结果:

.......
17/10/11 10:59:06 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 0.895042 s
Pi is roughly 3.1441357206786034
.......

二、下载安装Scala

下载地址:http://www.scala-lang.org/download/

解压缩、添加scala目录到环境变量:

#Scala Home
export SCALA_HOME=/usr/local/Cellar/scala-2.12.0
export PATH=$PATH:$SCALA_HOME/bin

查看Scala版本信息:

scala -version
Scala code runner version 2.12.0 -- Copyright 2002-2016, LAMP/EPFL and Lightbend, Inc.

三、Idea中安装Scala插件

打开Idea,config中找到Plugins:
这里写图片描述
搜索scala:
这里写图片描述

四、Idea中创建Sbt工程

新建工程,选择SCALA->SBT:
这里写图片描述
配置工程名称和路径:

这里写图片描述
新建Scala Class:

Kind选择Object,注意,这里不要选class.

这里写图片描述

写个Hello World:

这里写图片描述

运行( 如果上面文件选择class,这里没有运行scala文件到命令):
这里写图片描述

结果:
这里写图片描述

五、 Spark Maven工程

在maven工程中编写Spark程序,加入Spark的坐标:

 <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.10</artifactId>
      <version>2.1.0</version>
 </dependency>

aven工程中要想支持Scala,需要配置Scala SDK。在IDEA中依次选择File-> project structure->Global Libraries,添加Scala SDK:
这里写图片描述

这里一定要注意Scala的版本。

六、使用Spark分析用户购物记录

下面的数据是用户购买商品的记录,数据列之间用逗号分割,依次为用户名、商品名、价格,把下面的数据保存到文件UserPurchaseHistory.csv中:

John,iPhone Cover,9.99
John,HeadPhones,5.49
Jack,iPhone Cover,9.99
Jill,Samsung Galaxy Cover,8.95
Bob,iPad Cover,5.49
Jack,iPad Cover,5.49

新建一个scala文件:UserPurchaseApp.scala,编写代码:

package com.sprakmllib

import org.apache.spark.{SparkConf, SparkContext}

/**
  * Created by bee on 17/10/10.
  */
object UserPurchaseApp {


  def main(args: Array[String]): Unit = {

    val sc = new SparkContext("local[1]", "first")

    val user_data = sc.textFile("/Users/bee/Documents/spark/sparkmllib/UserPurchaseHistory.csv")
      .map(line => line.split(","))
      .map(purchaseRecord => (purchaseRecord(0), purchaseRecord(1), purchaseRecord(2)))

    //购买次数
    val numPurchase = user_data.count();

    println("购买次数: "+numPurchase)

    //购买商品的不同客户

    val uniqueUsers = user_data.map { case (user, product, price) => user }.distinct().count()
    println("购买商品的不同客户:  "+uniqueUsers)

    //总收入
    val totalRevenue = user_data.map { case (user, product, price) => price.toDouble }.sum()
    println("总收入:  "+totalRevenue)


    //统计最畅销的产品
    val productsByPopularity=user_data.map{case(user,product,price)=>(product,1)}
    .reduceByKey(_+_)
    .collect()
    .sortBy(-_._2)

    val  mostPopular=productsByPopularity(0)

    println("统计最畅销的产品:  "+mostPopular)
  }
}

运行结果:

购买次数: 6
购买商品的不同客户:  4
总收入:  45.400000000000006
统计最畅销的产品:  (iPad Cover,2)
4
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    《从Lucene到Elasticsearch:全文检索实战》
    Lucene、ES、ELK开发交流群:370734940
    Lucene、ES、ELK开发交流
    个人资料
    • 访问:810289次
    • 积分:8382
    • 等级:
    • 排名:第2473名
    • 原创:196篇
    • 转载:2篇
    • 译文:6篇
    • 评论:445条
    StackOverFlow
    http://stackoverflow.com/users/6526424
    统计
    博客专栏
    文章分类
    最新评论