Cracking the coding interview--Q8.7

硬币组合计数
本文提供了一种使用不同面额硬币组成特定金额的方法数量的计算方案,通过两种不同的算法实现:循环遍历方法和递归方法。循环遍历方法通过四层循环逐一检查所有可能的组合;递归方法则通过递归调用自身来考虑每种面额硬币的使用情况。

题目

原文:

Given an infinite number of quarters (25 cents), dimes (10 cents), nickels (5 cents) and pennies (1 cent), write code to calculate the number of ways of representing n cents.

译文:

给无限个25分,10分,5分和一分的硬币,写函数计算出组成n分的方式有多少种。

解答

由常规的循环遍历方法,代码如下:

public static int traverseCount(int n){
		int count=0;

		for(int i=0;i<=n/25;i++){
			for(int j=0;j<=n/10;j++){
				for(int k=0;k<=n/5;k++){
					for(int l=0;l<=n;l++){
						int sum=25*i+10*j+5*k+l;
						if(sum==n)
							count++;
						else if(sum>n)
							break;
					}
				}
			}
		}
		return count;
	}

由递归方法,要考虑币值的大小排序问题。否则可能出现1,5和5,1这样两个相同的组合,但是出现两次的情况。

public static int recurCount(int sum,int c,int n){
		int count=0;
		if(sum<=n){
			if(sum==n) return 1;
			if(c>=25) 
				count+=recurCount(sum+25,25,n);
			if(c>=10)
				count+=recurCount(sum+10,10,n);
			if(c>=5)
				count+=recurCount(sum+5,5,n);
			if(c>=1)
				count+=recurCount(sum+1,1,n);
		}
		return count;
	}

完整代码如下:

class Q8_7{
	
	// traverse
	public static int traverseCount(int n){
		int count=0;

		for(int i=0;i<=n/25;i++){
			for(int j=0;j<=n/10;j++){
				for(int k=0;k<=n/5;k++){
					for(int l=0;l<=n;l++){
						int sum=25*i+10*j+5*k+l;
						if(sum==n)
							count++;
						else if(sum>n)
							break;
					}
				}
			}
		}
		return count;
	}
	//recursion
	public static int recurCount(int sum,int c,int n){
		int count=0;
		if(sum<=n){
			if(sum==n) return 1;
			if(c>=25) 
				count+=recurCount(sum+25,25,n);
			if(c>=10)
				count+=recurCount(sum+10,10,n);
			if(c>=5)
				count+=recurCount(sum+5,5,n);
			if(c>=1)
				count+=recurCount(sum+1,1,n);
		}
		return count;
	}
	public static void main(String[] args){
		int n=27;
		//System.out.println(count(n));
		System.out.println(traverseCount(n));
		System.out.println(recurCount(0,25,n));
	}
}

---EOF---

内容概要:本文围绕【卡尔曼滤波】具有梯度流的一类系统的扩散映射卡尔曼滤波器研究(Matlab代码实现)“具有梯度流的一类系统的扩散映射卡尔曼滤波器研究”展开,重点介绍了一种结合扩散映射与卡尔曼滤波的新型滤波方法,适用于存在模型不确定性或混沌特征的动态系统状态估计。该方法利用梯度流信息提升滤波性能,在可预测性较高的阶段对混沌系统具备一定的预测能力,并通过Matlab代码实现验证其有效性。文档还附带多个相关研究主题,涵盖故障诊断、路径规划、信号处理、无人机控制、电力系统优化等多个领域,展示了卡尔曼滤波及其他先进算法在工程实践中的广泛应用。; 适合人群:具备一定数学基础和编程能力,从事控制理论、信号处理、自动化、航空航天、机器人或相关工程领域的研究生、科研人员及工程师。; 使用场景及目标:①研究复杂动态系统(如混沌系统)的状态估计与预测问题;②提升在模型不准确或噪声干扰严重情况下的滤波精度;③结合Matlab仿真平台开展算法开发与验证,推动理论成果向实际应用转化; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解扩散映射与卡尔曼滤波的融合机制,同时可参考文中列举的多种应用场景拓展思路,注重算法原理与工程实现的结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值