aliceyangxi1987的博客

智能时代,做个终身学习者,持续迭代;公众号-极客X养成计划;简书-不会停的蜗牛...

排序:
默认
按更新时间
按访问量

机器学习 人工智能 博文链接汇总

[入门问题] [TensorFlow] [深度学习] [好玩儿的算法应用实例] [聊天机器人] [神经网络] [机器学习] [机器学习算法应用实例] [自然语言处理] [数据科学] [Python] [Java] [机器学习-...

2017-05-13 23:41:07

阅读数:7630

评论数:17

用 TensorFlow.js 在浏览器中训练神经网络

本文结构: 什么是 TensorFlow.js 为什么要在浏览器中运行机器学习算法 应用举例:regression 和 tflearn 的代码比较 1. 什么是 TensorFlow.js TensorFlow.js 是一个开源库,不仅可以在浏览器中运行机器学习模型,还可以训练模...

2018-06-20 11:17:10

阅读数:347

评论数:2

LightGBM 如何调参

本文结构: 什么是 LightGBM 怎么调参 和 xgboost 的代码比较 1. 什么是 LightGBM Light GBM is a gradient boosting framework that uses tree based learning algorithm...

2018-06-16 07:58:07

阅读数:280

评论数:1

SVM 的核函数选择和调参

本文结构: 1. 什么是核函数 2. 都有哪些 & 如何选择 3. 调参 1. 什么是核函数 核函数形式 K(x, y) = <f(x), f(y)>, 其中 x, y 为 n 维,f 为 n 维到 m 维...

2018-06-08 08:15:22

阅读数:150

评论数:0

Logistic Regression 为什么用极大似然函数

1. 简述 Logistic Regression Logistic regression 用来解决二分类问题, 它假设数据服从伯努利分布,即输出为 正 负 两种情况,概率分别为 p 和 1-p, 目标函数 hθ(x;θ) 是对 p 的模拟,p 是个概率,这里用了 p=sigmoid 函数,...

2018-06-01 07:18:41

阅读数:143

评论数:0

Logistic regression 为什么用 sigmoid ?

假设我们有一个线性分类器: 我们要求得合适的 W ,使 0-1 loss 的期望值最小,即下面这个期望最小: 一对 x y 的 0-1 loss 为: 在数据集上的 0-1 loss 期望值为: 由 链式法则 将概率p变换如下: 为了最小化 R(h),只需要对每个 ...

2018-05-29 08:59:22

阅读数:154

评论数:0

AI 在 marketing 上的应用

AI 在 marketing 中有很多应用,例如 搜索,推荐系统,程序化广告,市场预测,语音/文本识别(会话商务),防欺诈,网页设计,商品定价,聊天机器人等。 其中很重要的一个部分叫 audience target,AI 可以应用在这里,可以对顾客和顾客的需求进行精准的定位,找到前20%最有价...

2018-05-28 07:15:47

阅读数:160

评论数:0

GAN 的 keras 实现

本文结构: 什么是 GAN? 优点? keras 例子? 什么是 GAN?GAN,全称为 Generative Adversarial Nets,直译为生成式对抗网络,是一种非监督式模型。一种应用是生成在原始数据集中不存在的但是却比较合理的数据,还可以拓展一张图片,生成下一帧影像,由简单几笔生成一...

2017-08-23 11:53:09

阅读数:1487

评论数:0

双向 LSTM

本文结构: 为什么用双向 LSTM 什么是双向 LSTM 例子 为什么用双向 LSTM?单向的 RNN,是根据前面的信息推出后面的,但有时候只看前面的词是不够的, 例如,我今天不舒服,我打算__一天。只根据‘不舒服‘,可能推出我打算‘去医院‘,‘睡觉‘,‘请假‘等等,但如果加上后面的‘一天‘,能...

2017-08-11 11:35:45

阅读数:8809

评论数:1

手把手用 IntelliJ IDEA 和 SBT 创建 scala 项目

1. 安装 sbt打开 terminal,检查 java 版本,安装 sbt: http://www.scala-sbt.org/release/docs/Installing-sbt-on-Mac.html$ java -version$ brew install sbt$ sbt about...

2017-07-31 11:42:08

阅读数:9050

评论数:0

attention 机制入门

在下面这两篇文章中都有提到 attention 机制: 使聊天机器人的对话更有营养 如何自动生成文章摘要今天来看看 attention 是什么。下面这篇论文算是在NLP中第一个使用attention机制的工作。他们把attention机制用到了神经网络机器翻译(NMT)上,NMT其实就是一个...

2017-07-28 22:53:31

阅读数:4671

评论数:0

一个 tflearn 情感分析小例子

学习资料: https://www.youtube.com/watch?v=si8zZHkufRY&list=PL2-dafEMk2A7YdKv4XfKpfbTH5z6rEEj3&index=5情感分析, 就是要识别出用户对一件事一个物或一个人的看法、态度,比如一个电影的评论,...

2017-07-27 10:51:50

阅读数:6293

评论数:4

使聊天机器人的对话更有营养

本文结构: 模型效果 模型 模块细节 今天的论文是 《Topic Aware Neural Response Generation》https://arxiv.org/pdf/1606.08340.pdf这篇论文的目的是让聊天机器人的回复更有营养,例如下面这种场景,要尽量避免‘我也是’‘明白了’‘...

2017-07-26 10:42:38

阅读数:3501

评论数:12

使聊天机器人具有个性

本文结构: 模型效果 模型的三个模块 模块细节 今天的论文是 《Assigning Personality/Identity to a Chatting Machine for Coherent Conversation Generation》https://arxiv.org/pdf/1706....

2017-07-18 10:27:52

阅读数:3201

评论数:4

用 Doc2Vec 得到文档/段落/句子的向量表达

本文结构: Doc2Vec 有什么用 两种实现方法 用 Gensim 训练 Doc2Vec Doc2Vec 或者叫做 paragraph2vec, sentence embeddings,是一种非监督式算法,可以获得 sentences/paragraphs/documents 的向量表达,是 w...

2017-07-14 10:13:44

阅读数:9453

评论数:2

用线性判别分析 LDA 降维

本文结构: 什么是 LDA 和 PCA 区别 LDA 降维的计算过程 LDA 降维的例子 1. 什么是 LDA先说判别分析,Discriminant Analysis 就是根据研究对象的各种特征值,判别其类型归属问题的一种多变量统计分析方法。根据判别标准不同,可以分为距离判别、Fisher 判别、...

2017-07-12 11:54:18

阅读数:2727

评论数:0

简述极大似然估计

极大似然估计是一种参数估计的方法。 先验概率是 知因求果,后验概率是 知果求因,极大似然是 知果求最可能的原因。 即它的核心思想是:找到参数 θ 的一个估计值,使得当前样本出现的可能性最大。例如,当其他条件一样时,抽烟者患肺癌的概率是不抽烟者的 5 倍,那么当我们已知现在有个人是肺癌患者,问这...

2017-07-10 10:29:07

阅读数:767

评论数:0

详解 Stacking 的 python 实现

1. 什么是 stackingstacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。2. 代码:例如我们用 RandomForestClassifier, ExtraTreesClassifier, GradientBoosti...

2017-07-09 09:27:20

阅读数:4534

评论数:0

Bagging 简述

本文结构: 基本流程 有放回抽样的好处 Bagging 特点 sklearn 中 Bagging 使用 Bagging 和 Boosting 的区别 bagging:bootstrap aggregating 的缩写。 是一种并行式集成学习方法,可用于二分类,多分类,回归等任务。基本流程: 对一...

2017-07-07 09:25:48

阅读数:1152

评论数:0

什么是 ROC AUC

本文结构: 什么是 ROC? 怎么解读 ROC 曲线? 如何画 ROC 曲线? 代码? 什么是 AUC? 代码? ROC 曲线和 AUC 常被用来评价一个二值分类器的优劣。先来看一下混淆矩阵中的各个元素,在后面会用到:1. ROC :纵轴为 TPR 真正例率,预测为正且实际为正的样本占所有正例样本...

2017-07-04 12:18:15

阅读数:1546

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭