Cracking the coding interview--Q19.8

本文介绍了一种高效的方法来计算一本书中特定单词的出现次数。该方法首先对整本书的内容进行预处理并存储在一个哈希表中,之后可以快速查询任意单词的出现频率。

题目

原文:

Design a method to find the frequency of occurrences of any given word in a book.

译文:

设计一个方法找到给定单词在一本书中的出现次数。

解答

若只是查询一次,先进行预处理,事先处理好,放在一个Hashtable里,在通过O(1)的时间进行查询即可。

代码如下:

class Q19_8{
	public static void main(String[] args){
		
	}

	public static Hashtable<String,Integer> setupDictionary(String[] book){
		Hashtable<String,Integer> table=new Hashtable<String,Integer>();
		for(String word:book){
			word=word.toLowerCase();
			if(word.trim()!=""){
				if(!table.cintainsKey(word)){
					table.put(word,0);
				}
				table.put(word,table.get(word)+1);
			}
		}
		return table;
	}

	public static int lookupWord(Hashtable<String,Integer> table,String word){
		if(table==null||word==null){
			return -1;
		}
		word=word.toLowerCase();
		if(table.containsKey(word)){
			return table.get(word);
		}
		return 0;
	}
}

---EOF---

内容概要:本文围绕“虚拟电厂多时间尺度调度优化”展开,重点研究日前调度和日内调度两个时间尺度下的优化模型,属于顶级SCI论文复现内容。研究整合了可再生能源发电、储能系统、多用户负荷等多元要素,并考虑储能容量衰减、功率预测不确定性等因素,构建精细化调度模型。文中提供了完整的Matlab代码实现,涵盖优化建模、求解流程及数据处理,帮助读者深入理解虚拟电厂在多时间尺度下的协调运行机制与优化策略。同时,文档还列举了大量相关研究方向与配套资源,如风光储预测、综合能源系统优化、路径规划、机器学习应用等,形成体系化的科研参考资料。; 适合人群:具备电力系统、能源优化或自动化等相关背景,熟悉Matlab编程,有一定优化建模基础的研究生、科研人员及工程技术人员。; 使用场景及目标:①复现高水平SCI论文中的虚拟电厂多时间尺度调度模型;②掌握Yalmip+Cplex等工具在能源系统优化中的应用;③开展含不确定性因素的电力系统调度、储能管理、可再生能源集成等方向的科研与项目开发; 阅读建议:建议结合提供的网盘资源,按目录顺序系统学习,优先理解优化模型的构建逻辑与时间尺度耦合机制,并动手运行代码以加深对算法实现与参数设置的理解,同时可拓展至其他相关研究方向进行对比与创新。【顶级SCI复现】【日前调度和日内调度两个时间尺度】虚拟电厂多时间尺度调度优化研究(Matlab代码实现)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值