LOJ 1045 - Digits of Factorial(数学)

原创 2016年08月29日 13:02:10
                                                                                        1045 - Digits of Factorial
    PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB

Factorial of an integer is defined by the following function

f(0) = 1

f(n) = f(n - 1) * n, if(n > 0)

So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.

In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.

Input

Input starts with an integer T (≤ 50000), denoting the number of test cases.

Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.

Output

For each case of input you have to print the case number and the digit(s) of factorial n in the given base.

Sample Input

Output for Sample Input

5

5 10

8 10

22 3

1000000 2

0 100

Case 1: 3

Case 2: 5

Case 3: 45

Case 4: 18488885

Case 5: 1

题意:求N!在base进制下有几位数
思路:log10(n)+ 1就是 n 的在十进制下的位数,由此可知 log base(n) 就是n在base 进制下的位数,再根据换底公式,log base(n) == log(n)/ log(base),这里让求的是阶乘,根据log的原理呢,就有log base (n!) == ( log(n) + log(n-1) + log(n-2) + 。。。。+ log(1)) / log(base)。用 sum 数组存一下 log(n!) 就可以快速的求出了
#include<cstdio>
#include<cmath>
const int maxn = 1e6 + 10;
double num[maxn];
void db()
{
    num[0] = 0;
    for(int i = 1 ; i < maxn ; i++)
        num[i] = num[i-1] + log(i);
}
int main()
{
    int t,n,m,kcase = 1;
    db();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        double F = log(m);
        int ans = num[n] / F + 1;
        printf("Case %d: %d\n",kcase++,ans);
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

lightoj1045 - Digits of Factorial(数论)

本题的大概题意是说,N是十进制的数,求N!在K进制下的位数。 N的范围虽然不大,才10^6,但是N!却大得惊人。如果直接求N的阶乘,转化为K进制的数再统计位数,理论上运用高精度 算法行得通。但是...

Light 1045 Digits of Factorial 【数论】

题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=120197#problem/UDigits of Factorial Time...

[LOJ#2289 && BZOJ5020][THUWC 2017]在美妙的数学王国中畅游

终于找到一个可以交的地方了… 考场上只写了LCT的60分暴力,因为那时候并看不懂什么泰勒展开…前段时间学了微积分,学了泰勒展开,大概知道了是怎么回事 其实题目说的很清楚了…但是那时候就是看不懂...

CF_292_C_Drazil and Factorial_数学

我妈刚才又骂我。 题意: 定义正整数x的F(x)值是x的各个数字的阶乘的乘积,如 。 给出一个正整数a,求最大的正整数x,满足以下条件: 1. F(x) = F(a) 2. 组成x的...

数学基础:HUD1124-Factorial(N!末尾0的个数)

FactorialProblem DescriptionThe most important part of a GSM network is so called Base Transceiver S...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)