关闭

LOJ 1045 - Digits of Factorial(数学)

47人阅读 评论(0) 收藏 举报
分类:
                                                                                        1045 - Digits of Factorial
Time Limit: 2 second(s) Memory Limit: 32 MB

Factorial of an integer is defined by the following function

f(0) = 1

f(n) = f(n - 1) * n, if(n > 0)

So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.

In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.

Input

Input starts with an integer T (≤ 50000), denoting the number of test cases.

Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.

Output

For each case of input you have to print the case number and the digit(s) of factorial n in the given base.

Sample Input

Output for Sample Input

5

5 10

8 10

22 3

1000000 2

0 100

Case 1: 3

Case 2: 5

Case 3: 45

Case 4: 18488885

Case 5: 1

题意:求N!在base进制下有几位数
思路:log10(n)+ 1就是 n 的在十进制下的位数,由此可知 log base(n) 就是n在base 进制下的位数,再根据换底公式,log base(n) == log(n)/ log(base),这里让求的是阶乘,根据log的原理呢,就有log base (n!) == ( log(n) + log(n-1) + log(n-2) + 。。。。+ log(1)) / log(base)。用 sum 数组存一下 log(n!) 就可以快速的求出了
#include<cstdio>
#include<cmath>
const int maxn = 1e6 + 10;
double num[maxn];
void db()
{
    num[0] = 0;
    for(int i = 1 ; i < maxn ; i++)
        num[i] = num[i-1] + log(i);
}
int main()
{
    int t,n,m,kcase = 1;
    db();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        double F = log(m);
        int ans = num[n] / F + 1;
        printf("Case %d: %d\n",kcase++,ans);
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17742次
    • 积分:2140
    • 等级:
    • 排名:第17820名
    • 原创:209篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条