Time Limit: 2 second(s) | Memory Limit: 32 MB |
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input | Output for Sample Input |
5 5 10 8 10 22 3 1000000 2 0 100 | Case 1: 3 Case 2: 5 Case 3: 45 Case 4: 18488885 Case 5: 1 |
#include<cstdio>
#include<cmath>
const int maxn = 1e6 + 10;
double num[maxn];
void db()
{
num[0] = 0;
for(int i = 1 ; i < maxn ; i++)
num[i] = num[i-1] + log(i);
}
int main()
{
int t,n,m,kcase = 1;
db();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
double F = log(m);
int ans = num[n] / F + 1;
printf("Case %d: %d\n",kcase++,ans);
}
return 0;
}