LOJ 1045 - Digits of Factorial(数学)

原创 2016年08月29日 13:02:10
                                                                                        1045 - Digits of Factorial
Time Limit: 2 second(s) Memory Limit: 32 MB

Factorial of an integer is defined by the following function

f(0) = 1

f(n) = f(n - 1) * n, if(n > 0)

So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.

In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.

Input

Input starts with an integer T (≤ 50000), denoting the number of test cases.

Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.

Output

For each case of input you have to print the case number and the digit(s) of factorial n in the given base.

Sample Input

Output for Sample Input

5

5 10

8 10

22 3

1000000 2

0 100

Case 1: 3

Case 2: 5

Case 3: 45

Case 4: 18488885

Case 5: 1

题意:求N!在base进制下有几位数
思路:log10(n)+ 1就是 n 的在十进制下的位数,由此可知 log base(n) 就是n在base 进制下的位数,再根据换底公式,log base(n) == log(n)/ log(base),这里让求的是阶乘,根据log的原理呢,就有log base (n!) == ( log(n) + log(n-1) + log(n-2) + 。。。。+ log(1)) / log(base)。用 sum 数组存一下 log(n!) 就可以快速的求出了
#include<cstdio>
#include<cmath>
const int maxn = 1e6 + 10;
double num[maxn];
void db()
{
    num[0] = 0;
    for(int i = 1 ; i < maxn ; i++)
        num[i] = num[i-1] + log(i);
}
int main()
{
    int t,n,m,kcase = 1;
    db();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        double F = log(m);
        int ans = num[n] / F + 1;
        printf("Case %d: %d\n",kcase++,ans);
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/neversayno_yl/article/details/52352145

lightoj 1045 - Digits of Factorial 【数学】

题目链接:lightoj 1045 - Digits of Factorial 1045 - Digits of Factorial PDF (English) Statist...
  • chenzhenyu123456
  • chenzhenyu123456
  • 2016-05-01 17:01:37
  • 481

lightoj 1045 Digits of Factorial (数学)

求N的阶乘在base进制下是几位数。 所有进制中,base^m+c=n    m是一个阶数,c是一个小于base^m的常数,n是目标数字。      如  10^2+23=123         故可...
  • w419387229
  • w419387229
  • 2017-10-05 12:20:53
  • 38

LightOJ 1045 - Digits of Factorial (k进制下N!的位数)

1045 - Digits of Factorial   PDF (English) Statistics Forum ...
  • helloiamclh
  • helloiamclh
  • 2016-02-08 17:17:08
  • 520

lightoj 1045 - Digits of Factorial

1045 - Digits of Factorial     PDF (English) Statistics Forum Time Limi...
  • z2664836046
  • z2664836046
  • 2016-08-22 21:46:28
  • 127

LightOJ - 1045 Digits of Factorial

阶乘
  • nameofcsdn
  • nameofcsdn
  • 2016-08-18 23:34:16
  • 1426

LightOJ 1045 Digits of Factorial

基础数论,可以Stirling公式,我是打的表 #include #include double fac[1000005] = {0, 0}; void init() { for(in...
  • qq_25884463
  • qq_25884463
  • 2015-11-25 21:33:45
  • 135

LightOJ 1045 Digits of Factorial

1045 - Digits of Factorial     PDF (English) Statistics Forum Time Limi...
  • yao1373446012
  • yao1373446012
  • 2016-09-11 10:14:14
  • 135

lightoj 1045 - Digits of Factorial 取对数

题意:求n!的长度。 题解:我们需要知道log10(n)=a+b(a是整数,b是小于1的小数)。则a是n在十进制下的长度-1。为什么?根据性质就可以推出来,10^(a+b)=10^a*10^b,10...
  • a601025382s
  • a601025382s
  • 2013-10-22 13:17:15
  • 982

uva 10061 How many zero's and how many digits ?(在bas进制下分解因子)

挺好的一道数论题。
  • u011328934
  • u011328934
  • 2013-07-26 16:20:01
  • 2568
收藏助手
不良信息举报
您举报文章:LOJ 1045 - Digits of Factorial(数学)
举报原因:
原因补充:

(最多只允许输入30个字)