Linus

  • 1969年出生
  • 1991年21岁的芬兰学生林纳斯在网上发布开源操作系统Linux 0.01
  • 1997年12月,来自IDC的报告称Linux市场占有率为17%
  • 1999年,第一届LinuxWorld大会召开,象征Linux时代到来;同年,Intel公司启动对Linux的支持服务

  • 1999年,林纳斯给自传作者发邮件,“你得拖我出去露营度假和玩高空跳伞!因为我觉得自己太忙了,这些事我自己根本就不会起意要去做。你正好让我能找个理由,去玩一玩这些我过去三年都顾不上玩的事情,即使机会一直就在那儿等着我……”
  • 我可能不回去读一本关于我自己的书,单至少我们鼓捣出这本书的过程,我想会很好玩。

  • 小时候不擅长运动、不擅长社交。数学非常好。
  • 外公是赫尔辛基大学统计学教授,1981年给了林纳斯11岁开始接触计算机的机会。
  • 当时的电脑出了可以用basic编程,其他用处不多。但让林纳斯产生了浓厚的兴趣
  • 小时候开始找外公要钱买计算机的书,用英文写的书,虽然英语不熟练。包括看计算机杂志。
  • 主持一周一次的聚会是林纳斯唯一的社交活动,其余均是电脑
  • 对于其他小朋友而言,已经到了阅读《花花公子》的时候,然而对于林纳斯,通宵玩电脑是常事。
  • 出了玩游戏,已经开始一边写深海洞穴里控制潜水艇前进的游戏
  • 由于妹妹的不断取消,英语得到了进步

中学时代:
  • 基本上在电脑前坐了四年
  • 数学、物理、生物和大多数科目都能拿到10分或9分,只有体育拿了7分,木工课6分。
大学:
  • 大一一年,穿梭在教室和我是之间,加上成堆的书籍和电脑设备。     

一个操作系统的诞生
  • 小时候的三台电脑:外公的commodore vic-20、Commodore 64、Amiga
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值