朴素贝叶斯分类器对含暴力网络评论的甄别

本文探讨了网络暴力语言的研究现状,指出国内对此的关注点较少且缺乏具体应用,而国外虽有情感分析的研究,但语言差异导致难以直接应用。作者构建了一个基于朴素贝叶斯分类器的网络暴力评论甄别器,详细描述了数据采集、清洗、分词和模型构建过程,提出了一种有效的中文文本预处理方法,实验证明了模型在中文文本识别中的有效性。

目 录
1 绪 论 1
1.1 研究背景及意义 1
1.2 国内外研究综述 1
1.2.1 网络暴力语言国内文献综述 1
1.2.2 情感分析国内外文献综述 2
1.2.3 主要存在的问题 3
1.3 组织结构及成果 3
1.3.1 本文结构 3
1.3.2 主要成果 4
2 朴素贝叶斯分类器 5
2.1 分类器 5
2.2 朴素贝叶斯理论 5
2.3 朴素贝叶斯的优缺点 6
3 整体框架 7
3.1 主要步骤 7
3.2 数据获取 7
3.3 数据清洗 7
3.4 分词 7
3.5 贝叶斯分类器构建 8
4 数据处理 10
4.1 实验平台以及数据介绍 10
4.2 数据清洗 11
4.2 分词 12
4.2 稀疏表示 14
5 模型建立 15
5.1 建立朴素贝叶斯分类模型 15
5.2 模型评价 16
5.3 比较实验 17
结 论 18
参考文献 19
附 录 21
致 谢 28

图目录
图3.1 基于贝叶斯分类器的网络暴力评论甄别器整体设计流程 9
图4.1 实验平台 10
图4.2 微博内容 10
图4.3 采集到的数据 11
图4.4 含有特殊字符以及表情符号的原始评论数据 11
图4.5 精确分词后结果 13
图4.6 清理后数据词云图 14
图5.1 数据分布图 15
图5.2 测试集特征词云图 15
图5.3 10次预测结果 16

表目录
表4.1 定义去除的中文符号、数字、英文符号以及表情 12
表4.2 文本清洗例子 12
表4.3 三种不同模式的对比 13
表4.4 词典稀疏表示 14
表5.1 各比较实验参数设置 17
表5.2 各比较实验结果 17
1.2.3 主要存在的问题
综上所述,国内更多关注的是网络暴力语言的特点,并没有给出太多具体的运用,另一方面,国外对于情感分析有相对丰富的研究资料,但是由于语言本身的不同,中文和英文的表达方法、语法以及句子构成有很大差别,在文本预处理方面就有很大的不同。另外一方面,缺少公开的中文网络暴力语料库。针对上述的不足,本文首先采集了微博评论数据,然后给出了具体的文本预处理步骤与方法,最后构建了基于朴素贝叶斯分类器的网络暴力语言甄别器,并对构建出的贝叶斯分类器进行了客观地评价。
1.3 组织结构及成果
1.3.1 本文结构
本文第一章介绍了选题的背景意义以及国内外关于网络暴力和情感分析研究的发展和趋势,说明基于机器学习的网络暴力分类器将会是一个主流。针对国内外对网络暴力研究的不足设计实验撰写了本论文。接下来给出了本文的总体结构。第二章介绍了有关的朴素贝叶斯分类器的理论基础知识。第三章给出了应用朴素贝叶斯分类器进行网络暴力分类器构建的总体流程框架,包括数据采集、文本清洗、结巴分词、分类器的构建以及评价方法。第四章给出了具体的实验步骤,主要是数据的清洗、分词和稀疏表示。第五章进行了模型的建立以及评价。最后给出了本文的结论以及对未来工作的展望。
1.3.2 主要成果
本文的主要成果可以总结如下:(1)整理了国内外对基于机器学习对网络暴力进行甄别的参考文献,总结了国内外现有参考文献的优缺点,给接下来的研究者提供参考。(2)给出了基于朴素贝叶斯网络暴力甄别分类器的全部详细步骤,包括数据清洗,构建词典,分类器构建以及评价预测。(3)建立了分类暴力词典。
本文给出了文本分析的所有步骤,包括数据的采集、清洗,文本的分词以及模型的建立、评价,所建立的模型能够对中文文本进行准确地暴力识别,具有很好的现实应用意义。

#Import and select the needing column 
import pandas as pd
content=pd.read_csv("./data .csv")["评论内容"]
#content.to_csv('./context.txt',index=None)
label=pd.read_csv("./data .csv")["标注"]

#Create the new data frame including the content and the conresponding label 
new_data=pd.DataFrame()
new_data["content"]=content
new_data["label"]=label
new_data.info() #11509

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(new_data["content"],label, test_size=0.2, random_state=42)

#Save the trainand test data into txt 
X_train.to_csv('./train.txt',index=None)
X_test.to_csv('./test.txt',index=None)


mport matplotlib
import matplotlib.pyplot as plt
import numpy as np
import codecs,sys
from string import punctuation
import re

from pylab import mpl
mpl.rcParams['font.sans-serif']=['SimHei']

labels = ["training set","testing set"]
men_means =[4808,4399]
women_means =[1208,1094]

x = np.arange(len(labels))  # the label locations
width = 0.35  # the width of the bars

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

【RIS 辅助的 THz 混合场波束斜视下的信道估计与定位】在混合场波束斜视效应下,利用太赫兹超大可重构智能表面感知用户信道与位置(Matlab代码实现)内容概要:本文围绕“IS 辅助的 THz 混合场波束斜视下的信道估计与定位”展开,重点研究在太赫兹(THz)通信系统中,由于混合近场与远场共存导致的波束斜视效应下,如何利用超大可重构智能表面(RIS)实现对用户信道状态信息和位置的联合感知与精确估计。文中提出了一种基于RIS调控的信道参数估计算法,通过优化RIS相移矩阵提升信道分辨率,并结合信号到达角(AoA)、到达时间(ToA)等信息实现高精度定位。该方法在Matlab平台上进行了仿真验证,复现了SCI一区论文的核心成果,展示了其在下一代高频通信系统中的应用潜力。; 适合人群:具备通信工程、信号处理或电子信息相关背景,熟悉Matlab仿真,从事太赫兹通信、智能反射面或无线定位方向研究的研究生、科研人员及工程师。; 使用场景及目标:① 理解太赫兹通信中混合场域波束斜视问题的成因与影响;② 掌握基于RIS的信道估计与用户定位联合实现的技术路径;③ 学习并复现高水平SCI论文中的算法设计与仿真方法,支撑学术研究或工程原型开发; 阅读建议:此资源以Matlab代码实现为核心,强调理论与实践结合,建议读者在理解波束成形、信道建模和参数估计算法的基础上,动手运行和调试代码,深入掌握RIS在高频通信感知一体化中的关键技术细节。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值