机器学习3:K近邻法K-Nearest-Neighbor Classifier/KNN(基于R language&Python)
k近邻法是一种基本分类与回归问题。k近邻法的输入为实例的特征向量,对应于特征空间中的点;输出为实例的类别,可以取很多类。k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻法不具有显式的学习过程。k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。k近邻法的三个要素是k值的选择、距离度量及分类决策规则。