XGBoost是在GBDT(梯度提升决策树)基础上发展而来。
GBDT含有几个关键点:梯度提升,提升决策树,回归问题。
本质模型为加法模型,基函数为决策树,迭代拟合标注和模型的残差,来不断逼近损失函数最小化。更一般的情况,以当前模型在L负梯度方向的值,作为残差的近似。
XGBoost(eXtreme Gradient Boosting)针对GBDT框架,加入了很多改进点。
1. XGB的特点
(1)传统GBDT以CART作为基函数,xgb还支持线性分类器,此时XGB相当于来L1/L2正则化项的LR(分类)或者Liear R(回归)。
booster [default=gbtree]
设置参数:gbtree: tree-based models/gblinear: linear models
(2)传统GBDT在优化时只用到一阶导数信息(负梯度),xgboost则对代价函数进行了二阶泰勒展开,同时用到一阶和二阶导数。且xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。
(3)xgboost在代价函数里加入了正则项,控制模型复杂度。正则项里包含了树的叶节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。 剪枝是都有的,叶子节点输出L2平滑是新增的。
(4)shrinkage缩减和column_subsampling
shrinkage缩减:类似于学习速率,在每一步tree boosting之后增加了一个参数n(权重),通过这种方式来减小每棵树的影响力,给后面的树提供空间去优化模型。
column subsampling:列(特征)抽样,随机森林那边学习来的,防止过拟合的效果比传统的行抽样还好(行抽样功能也有),并且有利于后面提到的并行化处理算法。
(5)split finding algorithms(划分点查找算法)
树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法 gr