lightGBM原理、改进简述

lightGBM是微软推出的高效、轻量级的梯度提升机,针对xgboost的内存消耗和速度问题进行优化。其特点包括基于Histogram的决策树算法、带深度限制的Leaf-wise生长策略,支持并行化学习和处理大规模数据。通过调整num_leaves等参数,可以在防止过拟合的同时提高模型精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. foreword

TSA比赛中,开始整的LR,把原始特征one-hot处理后输入LR训练。过了段时间开始搞RF和XGB,再后面搞LightGBM。

2. lightGBM简介

xgboost的出现,让数据民工们告别了传统的机器学习算法们:RF、GBM、SVM、LASSO……..。现在微软推出了一个新的boosting框架,想要挑战xgboost的江湖地位。

顾名思义,lightGBM包含两个关键点:light即轻量级,GBM 梯度提升机。

LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势:

  • 更快的训练效率

  • 低内存使用

  • 更高的准确率

  • 支持并行化学习

  • 可处理大规模数据

与常用的机器学习算法进行比较:速度飞起

这里写图片描述

3. xgboost缺点

XGB的介绍见

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值