这题要用构造法,
n=1特判
考虑n>=2的情况
不难发现最后那个数必须是0,否则无解(因为1和任何数左运算结果为1)
倒数第二个数若为1,则(..1)->0 =0
否则倒数第二个数为0:
此时若倒数第三个数为0 (...(0->0))->0=0 (0->0)
否则倒数第三个数为1 (...(1->0))->0 由于(..1)->0 =0 所以把1右运算 ..->(1->0)=..->0 想让结果为1,则..=0
考虑前面有1个0
(...->(0->(1->1->..->1->0))->0 = (..->(0->0))->0=(..->1)->0=1->0 =0
有解
否则前面均为1
1->1->1->1->0->0 无论怎么括都无解
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<string>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000+10)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int a[MAXN],n;
char str1[]="YES\n",str2[]="NO\n";
string logic(string s1,string s2)
{
string p=""+s1+"->"+s2+"";
p="("+p+")";
return p;
}
string itos(int x)
{
if (x) return string("1");
return string("0");
}
string logic(int i,int j)
{
string p(itos(a[i]));
Fork(k,i+1,j)
{
p+="->"+itos(a[k]);
}
p="("+p+")";
return p;
}
int main()
{
// freopen("B2.in","r",stdin);
// freopen(".out","w",stdout);
cin>>n;
For(i,n) scanf("%d",&a[i]);
if (a[n]==1)
{
cout<<str2;
return 0;
}
if (n==1)
{
cout<<str1<<"0\n";
return 0;
}
if (a[n-1]==1)
{
string p;
p=logic(logic(1,n-1),"0");
cout<<str1<<p<<endl;
return 0;
}
if (a[n-1]==0)
{
ForD(i,n-2)
if (a[i]==0)
{
string p=logic(i+1,n-1);
p=logic("0",p);
if (i>1) p=logic(logic(1,i-1),p);
p=logic(p,"0");
cout<<str1<<p<<endl;
return 0;
}
}
cout<<str2;
return 0;
}