BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

3110: [Zjoi2013]K大数查询

Time Limit: 20 Sec   Memory Limit: 512 MB
Submit: 418   Solved: 235
[ Submit][ Status][ Discuss]

Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

Sample Output


1
2
1

HINT



N,M<=50000,N,M<=50000

a<=b<=N

1操作中abs(c)<=N

2操作中abs(c)<=Maxlongint

Source

[ Submit][ Status][ Discuss]

本来上一次就偷懒。。。、

话说写线段树不写离散化可不是一个好习惯。。。

所以我果断加上了离散。。。

================Cute 分割线 ============================

其实这题可以直接拆数,zkw线段树区间修改法解决数组修改。。。

但是做到一半就把自己绕晕了....我X注定NC

话说这题要离散的是插入的数——所以拆的于是插入的数(具体来说,S1:头尾插1个,S2:头尾差x*i个)

然后总算A了……

我的人生都浪费在DeBug上了么......

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<map>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define MAXN (50000+10)
#define MAXM (50000+10)
#define MINAi (1)
#define MAXAi (size)
#define maxlongint (2147483647)
int n,m;
int a2[MAXN],size=0;
struct node
{
	int ch[2],c;
	node():c(0){ch[0]=ch[1]=0;}
}q[10000000];
int root[MAXN<<1],tail=0;
void inc(int &x,long long l,long long r,int c,int d)
{
	if (!x) x=++tail;
	q[x].c+=d;
	if (l==r) return;
	long long m=l+r>>1;
	if (c<=m) inc(q[x].ch[0],l,m,c,d);
	else inc(q[x].ch[1],m+1,r,c,d);	
}
void update(int x,int c,int d)
{
	for(int i=x;i<=n;i+=i&(-i)) inc(root[i],MINAi,MAXAi,c,d);
	for(int i=x;i<=n;i+=i&(-i)) inc(root[i+n],MINAi,MAXAi,c,d*x);
}
int ans[MAXN][2],ans_end[2],ans_siz[2];
void qur(int x)
{
	Rep(p,2)
		for(int i=x;i;i-=i&(-i)) ans[++ans_siz[p]][p]=root[i+p*n];
}
void turn(bool c)
{
	Rep(p,2)
		For(i,ans_siz[p])
			ans[i][p]=q[ans[i][p]].ch[c];
}
struct comm
{
	int p,a,b,c;
	comm(){}
}ask[MAXM];
map<long long ,int> h;
int main()
{
//	freopen("bzoj3110.in","r",stdin);
//	freopen(".out","w",stdout);
	scanf("%d%d",&n,&m);
	For(i,m) {scanf("%d%d%d%d",&ask[i].p,&ask[i].a,&ask[i].b,&ask[i].c);if (ask[i].p==1) a2[++size]=ask[i].c;}
	sort(a2+1,a2+1+size);
	size=unique(a2+1,a2+1+size)-(a2+1);
	For(i,size) h[a2[i]]=i;
	For(i,m)
	{
		if (ask[i].p==1) ask[i].c=h[ask[i].c];
	}
	
	For(i,m)
	{
		int p;
		p=ask[i].p;
		if (p==1)
		{
			int l,r,c;
			l=ask[i].a,r=ask[i].b,c=ask[i].c;
			update(l,c,1);update(r+1,c,-1);
		}
		else
		{
			long long l,r,k,l1,r1;
			l=ask[i].a,r=ask[i].b,k=ask[i].c;l1=l,r1=r;
			ans_siz[0]=ans_siz[1]=0;
			qur(r);memcpy(ans_end,ans_siz,sizeof(ans_end));qur(l-1);
			l=MINAi,r=MAXAi;
			while (l<r)
			{
				long long s[2]={0},m=(l+r)>>1;
				Rep(p,2)
				{
					For(i,ans_end[p]) s[p]+=q[q[ans[i][p]].ch[1]].c;
					long long p1=s[p];s[p]=0;
					Fork(i,ans_end[p]+1,ans_siz[p]) s[p]+=q[q[ans[i][p]].ch[1]].c;
					if (p==0) s[p]=p1*(r1+1)-s[p]*l1;
					else s[p]=p1-s[p];
				}
				long long tot=s[0]-s[1];
			//	cout<<tot<<' ';
				if (k<=tot) l=m+1,turn(1);else r=m,k-=tot,turn(0);				
			}
			printf("%d\n",a2[l]);
		}
	}	
	return 0;
}






  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值