NYOJ-119 士兵杀敌(三)【RMQ算法】

原创 2012年03月27日 21:14:39

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119

解题思路:

RMQ算法。

不会的可以去看看我总结的RMQ算法。

http://blog.csdn.net/niushuai666/article/details/6624672


代码如下:

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;

const int N = 100010;
int maxsum[N][20], minsum[N][20];

void RMQ(int num) //预处理->O(nlogn)
{
	for(int j = 1; j < 20; ++j)
		for(int i = 1; i <= num; ++i)
			if(i + (1 << j) - 1 <= num)
			{
				maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]);
				minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]);
			}
}

int main()
{
	int num, query;
	int src, des;
	scanf("%d %d", &num, &query);
		for(int i = 1; i <= num; ++i) //输入信息处理
		{
			scanf("%d", &maxsum[i][0]);
			minsum[i][0] = maxsum[i][0];
		}
		RMQ(num);
		while(query--) //O(1)查询
		{
			scanf("%d %d", &src, &des);
			int k = (int)(log(des - src + 1.0) / log(2.0));
			int maxres = max(maxsum[src][k], maxsum[des - (1 << k) + 1][k]);
			int minres = min(minsum[src][k], minsum[des - (1 << k) + 1][k]);
			printf("%d\n", maxres - minres);
		}
	return 0;
}

代码优化后:

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;

const int N = 100010;
int maxsum[20][N], minsum[20][N]; //优化1

void RMQ(int num) //预处理->O(nlogn)
{
	for(int i = 1; i != 20; ++i)
		for(int j = 1; j <= num; ++j)
			if(j + (1 << i) - 1 <= num)
			{
				maxsum[i][j] = max(maxsum[i - 1][j], maxsum[i - 1][j + (1 << i >> 1)]); //优化2
				minsum[i][j] = min(minsum[i - 1][j], minsum[i - 1][j + (1 << i >> 1)]);
			}
}

int main()
{
	int num, query;
	int src, des;
	scanf("%d %d", &num, &query);
		for(int i = 1; i <= num; ++i) //输入信息处理
		{
			scanf("%d", &maxsum[0][i]);
			minsum[0][i] = maxsum[0][i];
		}
		RMQ(num);
		while(query--) //O(1)查询
		{
			scanf("%d %d", &src, &des);
			int k = (int)(log(des - src + 1.0) / log(2.0));
			int maxres = max(maxsum[k][src], maxsum[k][des - (1 << k) + 1]);
			int minres = min(minsum[k][src], minsum[k][des - (1 << k) + 1]);
			printf("%d\n", maxres - minres);
		}
	return 0;
}

优化1:数组由F[N][20]变为F[20][N];

因为数组的地址为a + i + j,对应上面数组,我们需要先循环N的部分,所以

如果是第一种,我们计算时因为i不断变化,我们就需要计算a + i + j

如果是第二种,我们计算时a + i不变,只需要改变j

优化2:

位运算

nyoj119 士兵杀敌(三) (线段树,两个value)

士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最...
  • Strokess
  • Strokess
  • 2016年02月29日 19:26
  • 441

nyoj 119 士兵杀敌(三) 【线段树】【单点更新】

题意:。。。 策略如题。 思路:我们先假设只求某一区间的最大值,我们只需要利用线段树的模板,只需要初始化和询问的时候小小的修改一下,改成祖先结点储存的不再是子节点的和而是两个子节点之间的最大值,这样我...
  • shengweisong
  • shengweisong
  • 2014年09月28日 22:43
  • 800

NYOJ 士兵杀敌系列

int read(){ int x(0),f(1); char ch=getchar(); while (ch'9') {if (ch=='-') f=-1;ch=getchar();}...
  • Viscu
  • Viscu
  • 2016年09月07日 18:38
  • 921

NYOJ - 士兵杀敌(三)(RMQ)

士兵杀敌(三) 时间限制:2000 ms  |           内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内...
  • SevenMIT
  • SevenMIT
  • 2013年04月26日 23:50
  • 1014

nyoj 119 士兵杀敌(三) St算法

士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌...
  • y990041769
  • y990041769
  • 2013年03月21日 11:52
  • 1102

nyoj 119士兵杀敌(三)(线段树区间最值查询,RMQ算法)

题目119 题目信息 运行结果 本题排行 讨论区 士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 ...
  • su20145104009
  • su20145104009
  • 2016年04月13日 22:54
  • 4335

NYOJ119 士兵杀敌(三)(RMQ算法)

题目: 士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经...
  • riba2534
  • riba2534
  • 2017年04月26日 21:23
  • 130

nyoj119 士兵杀敌(三)RMQ算法

士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最...
  • BBHHTT
  • BBHHTT
  • 2017年08月09日 08:03
  • 91

【解题报告】NYOJ 119 士兵杀敌(三)--RMQ算法详解

RMQ问题 题目连接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119------  士兵杀敌(三) 大意就是,有一个数列 {a1,a2,a...
  • x314542916
  • x314542916
  • 2012年08月01日 16:37
  • 1558

NYoj-119-士兵杀敌(3)-RMQ算法

士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数...
  • Holyang_1013197377
  • Holyang_1013197377
  • 2015年04月01日 15:58
  • 685
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:NYOJ-119 士兵杀敌(三)【RMQ算法】
举报原因:
原因补充:

(最多只允许输入30个字)