转载请注明出处:http://blog.csdn.net/ns_code/article/details/26966159
- 
 
  题目描述:
 
 
- 
  输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。 
- 
 
  输入:
 
 
- 
  每个测试案例包括2行: 第一行为2个整数n,k(1<=n,k<=200000),表示数组的长度。 第二行包含n个整数,表示这n个数,数组中的数的范围是[0,1000 000 000]。 
- 
 
  输出:
 
 
- 
  对应每个测试案例,输出最小的k个数,并按从小到大顺序打印。 
- 
 
  样例输入:
 
 
- 
  8 4 4 5 1 6 2 7 3 8 
- 
 
  样例输出:
 
 
- 
  1 2 3 4 
1、最直观的思路依然是对数组进行快速排序,而后取出前k个元素。这样的时间复杂度为O(nlogn)
2、这里可以采用类似于上面那道题目的基于Partition的方法,只是这次要求的分界点不是中位数,而是第k小的数,即排序后应该位于数组的第k-1个位置上的元素,这样该分界点前面的k个元素(包括该分界点)便是最小的k个数(这k个数字不一定是排序的)。跟上面那道题目分析的一样,这种方法的平均时间复杂度为O(n),最坏情况下的时间复杂度为O(n*n),一样也可以用算法导论上提出的分割数组的方法,将最坏情况下的时间复杂度控制到O(n)。
代码如下:
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
void Swap(int *a,int *b)
{
	if(*a != *b)
	{
		*a = *a + *b;
		*b = *a - *b;
		*a = *a - *b;
	}
}
/*
算法导论版快排的Partition函数
*/
int Partition(int *A,int low,int high)
{
	if(A==NULL || low<0 || high<0 || low>=high)
		return -1;
	
	int small = low-1;
	int j;
	for(j=low;j<high;j++)
	{
		if(A[j] <= A[high])
		{
			++small;
			if(j != small)
				Swap(&A[j],&A[small]);
		}
	}
	++small;
	Swap(&A[small],&A[high]);
	return small;
}
int Random_Partition(int *A,int low,int high)
{
	//设置随机种子
	srand((unsigned)time(0));
	int index = low + rand()%(high-low+1);
	Swap(&A[index],&A[high]);
	return Partition(A,low,high);
}
 
/*
返回数组A中出现次数超过一半的数字
基于Partition函数的实现
*/
void MinKNum(int *A,int len,int k)
{
	if(A==NULL || len<1)
		return;
	int low = 0;
	int high = len-1;
	int index = Random_Partition(A,low,high);
	while(index != k-1)
	{
		if(index > k-1)
			index = Random_Partition(A,low,index-1);
		else
			index = Random_Partition(A,index+1,high);
	}
}
int main()
{
	int n,k;
	while(scanf("%d %d",&n,&k) != EOF)
	{
		int *A = (int *)malloc(sizeof(int)*n);
		if(A == NULL)
			exit(EXIT_FAILURE);
		int i;
		for(i=0;i<n;i++)
			scanf("%d",A+i);
		MinKNum(A,n,k);
		for(i=0;i<k;i++)
		{
			printf("%d ",A[i]);
		}
		printf("\n");
	}
	return 0;
}这种方法,建立小顶堆需要O(n)的时间,而后筛选出k个最小的数需要对堆调整k次,每次调整所需时间依次为O(logn)、O(log(n-1))、O(log(n-2))...O(log(n-k)),可以近似认为每次调整需要的时间为O(logn)。这样,该方法的时间复杂度为O(n+klogn),至于空间复杂度,如果可以改变输入的数组,我们可以直接在数组上建堆和调整堆,这是空间复杂度为O(1),如果不能改变输入数组的话,我们就要建立一个小顶堆,这样空间复杂度为O(n)。
我在九度OJ上采用的这种方法run,结果AC,代码如下:
#include<stdio.h>
#include<stdlib.h>
/*
arr[start+1...end]满足小顶堆的定义,
将arr[start]加入到小顶堆arr[start+1...end]中,
调整arr[start]的位置,使arr[start...end]也成为小顶堆
注:由于数组从0开始计算序号,也就是二叉堆的根节点序号为0,
因此序号为i的左右子节点的序号分别为2i+1和2i+2
*/
void HeapAdjustDown(int *arr,int start,int end)
{
	int temp = arr[start];	//保存当前节点
	int i = 2*start+1;		//该节点的左孩子在数组中的位置序号
	while(i<=end)
	{
		//找出左右孩子中最小的那个
		if(i+1<=end && arr[i+1]<arr[i])  
			i++;
		//如果符合堆的定义,则不用调整位置
		if(arr[i]>=temp)	
			break;
		//最小的子节点向上移动,替换掉其父节点
		arr[start] = arr[i];
		start = i;
		i = 2*start+1;
	}
	arr[start] = temp;
}
/*
得到最小的k个数,保存在arr中的最后面k个位置
*/
void MinHeapKNum(int *arr,int len,int k)
{
	if(arr==NULL || len<1 || k<1 || k>len)
		return;
	int i;
	//把数组建成为小顶堆
	//第一个非叶子节点的位置序号为(len-1)/2
	for(i=(len-1)/2;i>=0;i--)
		HeapAdjustDown(arr,i,len-1);
	//进行堆排序
	for(i=len-1;i>=len-k;i--)
	{
		//堆顶元素和最后一个元素交换位置,
		//这样最后的一个位置保存的是最小的数,
		//每次循环依次将次小的数值在放进其前面一个位置,
		int temp = arr[i];
		arr[i] = arr[0];
		arr[0] = temp;
		//将arr[0...i-1]重新调整为小顶堆
		HeapAdjustDown(arr,0,i-1);
	}
}
int main()
{
	int n,k;
	while(scanf("%d %d",&n,&k) != EOF)
	{
		int *A = (int *)malloc(sizeof(int)*n);
		if(A == NULL)
			exit(EXIT_FAILURE);
		int i;
		for(i=0;i<n;i++)
			scanf("%d",A+i);
		MinHeapKNum(A,n,k);
		for(i=n-1;i>=n-k;i--)
		{
			//根据要求的格式输出
			if(i == n-k)
				printf("%d\n",A[i]);
			else
				printf("%d ",A[i]);
		}
	}
	return 0;
}/**************************************************************
    
 Problem: 1371
    
 User: mmc_maodun
    
 Language: C
    
 Result: Accepted
    
 Time:840 ms
    
 Memory:8752 kb
****************************************************************/
4、还可以考虑采用大顶堆,但不是用数组的n个元素来建堆,而是用前k个数字来建立大顶堆,而后拿后面的后面的n-k个元素依次与大顶堆中的最大值(即堆顶)元素比较,如果小于该最大元素,则用该元素替换掉堆顶元素,并调整堆使其维持大顶堆的结构,如果大于该最大元素,则直接跳过,继续拿下一个数字与堆顶元素比较,等到所有的元素比较并操作完,这时数组中后面的元素都比该大顶堆中的数字要大,那么该大顶堆中的k各数字变为数组中最小的k个数字,且堆顶元素为这k个最小数组中最大的,因此它又是数组中第k小的数字。
该算法建立大顶堆需要的时间为O(k),每次调整堆需要的时间为O(logk),而总共要调整n-k次,因此时间复杂度为
O(k+(n-k)logk),当k远远小于n时,时间复杂度可近似为O(nlogk)。另外,该算法非常适合海量数据处理,尤其在内存有限,不能一次读入所有的数据时,当n很大,而k较小时,一次向内存读入k个数据,而后每次可以读入一个进行比较,这对于内存最多可容纳k个数据时便可满足要求。
5、也可以用数组保存k个数(其实可以抽象为一个容器,容器选择的不同,对所需时间会有不同的影响),求其最大值,分别与后面的元素比较,利用与第4中方法类似的策略,最后该数组中个保存的便是最小的k个数字。这种方法的时间复杂度为O(n*k)。
以上两种思路代码不再给出。
 
                   
                   
                   
                   
                            
 
                             本文探讨了多种高效寻找数组中最小K个数的方法,包括快速排序、基于Partition的算法、小顶堆和大顶堆等技术,适用于不同场景的数据处理需求。
本文探讨了多种高效寻找数组中最小K个数的方法,包括快速排序、基于Partition的算法、小顶堆和大顶堆等技术,适用于不同场景的数据处理需求。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   836
					836
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            