【算法拾遗】最大公约数

本文介绍了欧几里得算法(辗转相除法)用于求解两个正整数最大公约数的基本原理和实现。通过辗转相除和辗转相减法,并进一步优化,提供了一种适用于大整数计算的高效算法,其最坏情况下的时间复杂度为O(log2max(x,y))。" 135645247,7218857,顺时针旋转图像算法解析,"['算法', '数据结构', '编程挑战']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载请注明出处:http://blog.csdn.net/ns_code/article/details/28505569


序言

    求两个正整数的最大公约数是一个很古老且很基本的问题,欧几里得在其著作《几何原本》中给出了高效的解法——辗转相除法,也叫做欧几里得算法。下面我们来看下求最大公约数的一些方法。

方法一

    我们先来看欧几里得的辗转相除法。原理很简单,假设用f(x,y)表示x和y的最大公约数,我们令x>y,则有x=ky+b,如果一个数能够同时整除x和y,则必能同时整除b和y,而能够同时整除b和y的数也必能同时整除x和y,即x和y的公约数与b和y的公约数相同,因此二者的最大公约数也相同,则有f(x,y)=

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值