Java设计模式 —— 单例(Singleton)

      最近在csdn和github上面发现了几篇比较好的设计模式文章,于是打算把23种设计模式都整理下来,以方便以后再次复习,同时将知识分享给朋友们共同进步。

      写软件的时候经常需要用到打印日志功能,可以帮助你调试和定位问题,项目上线后还可以帮助你分析数据。但是Java原生带有的System.out.println()方法却很少在真正的项目开发中使用,甚至像findbugs等代码检查工具还会认为使用System.out.println()是一个bug。

      为什么作为Java新手神器的System.out.println(),到了真正项目开发当中会被唾弃呢?其实只要细细分析,你就会发现它的很多弊端。比如不可控制,所有的日志都会在项目上线后照常打印,从而降低运行效率;又或者不能将日志记录到本地文件,一旦打印被清除,日志将再也找不回来;再或者打印的内容没有Tag区分,你将很难辨别这一行日志是在哪个类里打印的。

      你的leader也不是傻瓜,用System.out.println()的各项弊端他也清清楚楚,因此他今天给你的任务就是制作一个日志工具类,来提供更好的日志功能。不过你的leader人还不错,并没让你一开始就实现一个具备各项功能的牛逼日志工具类,只需要一个能够控制打印级别的日志工具就好。

这个需求对你来说并不难,你立刻就开始动手编写了,并很快完成了第一个版本:

public class LogUtil {

	public final int DEGUB = 0;

	public final int INFO = 1;

	public final int ERROR = 2;

	public final int NOTHING = 3;

	public int level = DEGUB;

	public void debug(String msg) {
		if (DEGUB >= level) {
			System.out.println(msg);
		}
	}

	public void info(String msg) {
		if (INFO >= level) {
			System.out.println(msg);
		}
	}

	public void error(String msg) {
		if (ERROR >= level) {
			System.out.println(msg);
		}
	}

}


通过这个类来打印日志,只需要控制level的级别,就可以自由地控制打印的内容。比如现在项目处于开发阶段,就将level设置为DEBUG,这样所有的日志信息都会被打印。而项目如果上线了,可以把level设置为INFO,这样就只能看到INFO及以上级别的日志打印。如果你只想看到错误日志,就可以把level设置为ERROR。而如果你开发的项目是客户端版本,不想让任何日志打印出来,可以将level设置为NOTHING。打印的时候只需要调用:通过这个类来打印日志,只需要控制level的级别,就可以自由地控制打印的内容。比如现在项目处于开发阶段,就将level设置为DEBUG,这样所有的日志信息都会被打印。而项目如果上线了,可以把level设置为INFO,这样就只能看到INFO及以上级别的日志打印。如果你只想看到错误日志,就可以把level设置为ERROR。而如果你开发的项目是客户端版本,不想让任何日志打印出来,可以将level设置为NOTHING。打印的时候只需要调用:通过这个类来打印日志,只需要控制level的级别,就可以自由地控制打印的内容。比如现在项目处于开发阶段,就将level设置为DEBUG,这样所有的日志信息都会被打印。而项目如果上线了,可以把level设置为INFO,这样就只能看到INFO及以上级别的日志打印。如果你只想看到错误日志,就可以把level设置为ERROR。而如果你开发的项目是客户端版本,不想让任何日志打印出来,可以将level设置为NOTHING。打印的时候只需要调用:      通过这个类来打印日志,只需要控制level的级别,就可以自由地控制打印的内容。比如现在项目处于开发阶段,就将level设置为DEBUG,这样所有的日志信息都会被打印。而项目如果上线了,可以把level设置为INFO,这样就只能看到INFO及以上级别的日志打印。如果你只想看到错误日志,就可以把level设置为ERROR。而如果你开发的项目是客户端版本,不想让任何日志打印出来,可以将level设置为NOTHING。打印的时候只需要调用:

new LogUtil().debug("Hello World");

    你迫不及待地将这个工具介绍给你的leader,你的leader听完你的介绍后说:“好样的,今后大伙都用你写的这个工具来打印日志了!”

     可是没过多久,你的leader找到你来反馈问题了。他说虽然这个工具好用,可是打印这种事情是不区分对象的,这里每次需要打印日志的时候都需要new出一个新的LogUtil,太占用内存了,希望你可以将这个工具改成用单例模式实现。

     你认为你的leader说的很有道理,而且你也正想趁这个机会练习使用一下设计模式,于是你写出了如下的代码:

public class LogUtil {

	private static LogUtil sLogUtil;

	public final int DEGUB = 0;

	public final int INFO = 1;

	public final int ERROR = 2;

	public final int NOTHING = 3;

	public int level = DEGUB;

	private LogUtil() {
	}

	public static LogUtil getInstance() {
		if (sLogUtil == null) {
			sLogUtil = new LogUtil();
		}
		return sLogUtil;
	}

	public void debug(String msg) {
		if (DEGUB >= level) {
			System.out.println(msg);
		}
	}

	public void info(String msg) {
		if (INFO >= level) {
			System.out.println(msg);
		}
	}

	public void error(String msg) {
		if (ERROR >= level) {
			System.out.println(msg);
		}
	}

}

首先将LogUtil的构造函数私有化,这样就无法使用new关键字来创建LogUtil的实例了。然后使用一个sLogUtil私有静态变量来保存实例,并提供一个公有的getInstance方法用于获取LogUtil的实例,在这个方法里面判断如果sLogUtil为空,就new出一个新的LogUtil实例,否则就直接返回sLogUtil。这样就可以保证内存当中只会存在一个LogUtil的实例了。单例模式完工!这时打印日志的代码需要改成如下方式:

LogUtil.getInstance().debug("Hello World");

你将这个版本展示给你的leader瞧,他看后笑了笑,说:“虽然这看似是实现了单例模式,可是还存在着bug的哦。

你满腹狐疑,单例模式不都是这样实现的吗?还会有什么bug呢? 

你的leader提示你,使用单例模式就是为了让这个类在内存中只能有一个实例的,可是你有考虑到在多线程中打印日志的情况吗?如下面代码所示:

        public static LogUtil getInstance() {
		if (sLogUtil == null) {
			sLogUtil = new LogUtil();
		}
		return sLogUtil;
	}

如果现在有两个线程同时在执行getInstance方法,第一个线程刚执行完第2行,还没执行第3行,这个时候第二个线程执行到了第2行,它会发现sLogUtil还是null,于是进入到了if判断里面。这样你的单例模式就失败了,因为创建了两个不同的实例。你恍然大悟,不过你的思维非常快,立刻就想到了解决办法,只需要给方法加上同步锁就可以了,代码如下:

        public synchronized static LogUtil getInstance() {
		if (sLogUtil == null) {
			sLogUtil = new LogUtil();
		}
		return sLogUtil;
	}    

这样,同一时刻只允许有一个线程在执行getInstance里面的代码,这样就有效地解决了上面会创建两个实例的情况。
你的leader看了你的新代码后说:“恩,不错。这确实解决了有可能创建两个实例的情况,但是这段代码还是有问题的。”
你紧张了起来,怎么还会有问题啊?
你的leader笑笑:“不用紧张,这次不是bug,只是性能上可以优化一些。你看一下,如果是在getInstance方法上加了一个synchronized,那么我每次去执行getInstace方法的时候都会受到同步锁的影响,这样运行的效率会降低,其实只需要在第一次创建LogUtil实例的时候加上同步锁就好了。我来教你一下怎么把它优化的更好。”
首先将synchronized关键字从方法声明中去除,把它加入到方法体当中:

        public static  LogUtil getInstance() {
		synchronized (LogUtil.class) {
			if (sLogUtil == null) {
				sLogUtil = new LogUtil();
			}
			return sLogUtil;
		}
	}

这样效果是和直接在方法上加synchronized完全一致的。然后在synchronized的外面再加一层判断,如下所示:

	public static LogUtil getInstance() {
		if (sLogUtil == null) {
			synchronized (LogUtil.class) {
				if (sLogUtil == null) {
					sLogUtil = new LogUtil();
				}
			}
		}
		return sLogUtil;
	}

代码改成这样之后,只有在sLogUtil还没被初始化的时候才会进入到第3行,然后加上同步锁。等sLogUtil一但初始化完成了,就再也走不到第3行了,这样执行getInstance方法也不会再受到同步锁的影响,效率上会有一定的提升。

你情不自禁赞叹到,这方法真巧妙啊,能想得出来实在是太聪明了。

你的leader马上谦虚起来:“这种方法叫做双重锁定(Double-Check Locking),可不是我想出来的,更多的资料你可以在网上查一查。”

单例:保证一个类仅有一个实例,并提供一个访问它的全局访问点。

本文转载自:http://blog.csdn.net/guolin_blog/article/details/8860649,非常感谢。 

 
 

                
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 、资源5来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 、资源5来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。、 5资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值