生成一个集合的所有子集 Subset

本文探讨了递归状态生成问题,通过实例详细解释了如何利用递归算法生成无重复元素集合的子集及有重复元素集合的子集。通过深度递归和回溯技巧,实现集合子集的全面生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

典型的递归状态生成问题。类似于全排列的生成问题。


问题一:无重复元素集合的子集。Given a set of distinct integers, S, return all possible subsets.

思路:借助一个now数组存储临时的子集。不断切换状态进行深层递归,在递归最深处保存生成的子集。

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        vector<vector<int> > result;
        if(S.empty()) return result;
        sort(S.begin(), S.end());
        vector<int> now;
        fun(S, result, now, 0);
        return result;
    }
    
    void fun(const vector<int> &s, vector<vector<int> > &result, vector<int> &now, int n)
    {
        if(n == s.size())
        {
            result.push_back(now); //递归最深处:所有元素都判定过取或不取
            return;
        }
        else
        {
            fun(s, result, now, n+1); //不取
            now.push_back(s[n]);
            fun(s, result, now, n+1); //取
            now.pop_back(); //回溯前一定要恢复回原样
        }
        
    }
};

问题二:有重复元素集合的子集。Given a collection of integers that might contain duplicates, S, return all possible subsets.

class Solution {
public:
    vector<vector<int> > subsetsWithDup(vector<int> &S) {
        vector<vector<int> > result;
        vector<int> now;
        sort(S.begin(), S.end());//排序
        set<vector<int> > s;
        backtrack(s, now, S, 0);
        set<vector<int> >::iterator it = s.begin();
        for(;it != s.end();it++)
            result.push_back(*it);
        return result; 
    }
    
    void backtrack(set<vector<int> > &result, vector<int> &now, vector<int> &S, int idx)
    {
        if(idx == S.size())
        {
            result.insert(now);//set去重复
            return;
        }
        backtrack(result, now, S, idx+1);
        now.push_back(S[idx]);
        backtrack(result, now, S, idx+1);
        now.pop_back();
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值