otsu算法选择使类间方差最大的灰度值为阈值,具有很好的效果
算法具体描述见otsu论文,或冈萨雷斯著名的数字图像处理那本书
这里给出程序流程:
1、计算直方图并归一化histogram
2、计算图像灰度均值avgValue.
3、计算直方图的零阶w[i]和一级矩u[i]
4、计算并找到最大的类间方差(between-class variance)
variance[i]=(avgValue*w[i]-u[i])*(avgValue*w[i]-u[i])/(w[i]*(1-w[i]))
对应此最大方差的灰度值即为要找的阈值
5、用找到的阈值二值化图像
我在代码中做了一些优化,所以算法描述的某些地方跟程序并不一致
otsu代码,先找阈值,继而二值化
更多情况下我们并不需要对每一帧都是用otsu寻找阈值,于是可以先找到阈值,然后用找到的阈值处理后面的图像。下面这个函数重载了上面的,返回值就是阈值。只做了一点改变
我在手的自动检测中使用这个方法,效果很好。
下面是使用上述两个函数的简单的主程序,可以试运行一下,如果处理视频,要保证第一帧时,手要在图像中。
效果图:
1、肤色cb分量
2、otsu自适应阈值分割效果
3、开运算后效果