关闭

leetcode 60:Permutation Sequence

135人阅读 评论(0) 收藏 举报
分类:
题目:

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

思路:

用回溯的思想来做,实现如下:

具体思路参考Permutation。

class Solution {
public:
	string getPermutation(int n, int k) {
		vector<char> nums;
		for (int i = 1; i <= n; i++) nums.push_back(i+'0');
		count = 0;
		string result;
		back(0, n, k, nums, result);
		return result;
		//return result.substr(0,n);
	}
	void back(int index, int size, int k, vector<char>& nums,string &result)
	{
		if (index >= size)
		{
			count++;
			if (count >= k)	result.assign(nums.begin(),nums.end());
			return;
		}
		for (int i = index; i<size && count<k; i++)
		{
			swap(nums[i], nums[index]);
			back(index + 1, size, k, nums,result);
			swap(nums[i], nums[index]);
		}
	}
private:
	int count;
};
这种解法耗时太长了。

下面用数学解法。

考虑到n个数字,共有n!种组合。nums[]={1,2,...,n},则结果res也有n个数字。

且满足如下关系:res[0]=nums[k/(n-1)!],其他的关系类似。

实现如下:

class Solution {
public:
	string getPermutation(int n, int k) {
		vector<char> nums;
		int factorial = 1;
		string res;
		for (int i = 1; i <= n; i++)
		{
			factorial *= i;
			nums.push_back(i + '0');
		}
		k--;
		for (int i = 0; i < n; i++)
		{
			factorial = factorial / (n - i);
			int select = k / factorial;
			res.push_back(nums[select]);
			for (int j = select; j < n - i - 1; j++)
				nums[j] = nums[j + 1];
			k = k % factorial;
		}
		return res;
	}
};



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:45337次
    • 积分:2534
    • 等级:
    • 排名:第14965名
    • 原创:215篇
    • 转载:20篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论