leetcode 60:Permutation Sequence

原创 2015年11月18日 21:33:23
题目:

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

思路:

用回溯的思想来做,实现如下:

具体思路参考Permutation。

class Solution {
public:
	string getPermutation(int n, int k) {
		vector<char> nums;
		for (int i = 1; i <= n; i++) nums.push_back(i+'0');
		count = 0;
		string result;
		back(0, n, k, nums, result);
		return result;
		//return result.substr(0,n);
	}
	void back(int index, int size, int k, vector<char>& nums,string &result)
	{
		if (index >= size)
		{
			count++;
			if (count >= k)	result.assign(nums.begin(),nums.end());
			return;
		}
		for (int i = index; i<size && count<k; i++)
		{
			swap(nums[i], nums[index]);
			back(index + 1, size, k, nums,result);
			swap(nums[i], nums[index]);
		}
	}
private:
	int count;
};
这种解法耗时太长了。

下面用数学解法。

考虑到n个数字,共有n!种组合。nums[]={1,2,...,n},则结果res也有n个数字。

且满足如下关系:res[0]=nums[k/(n-1)!],其他的关系类似。

实现如下:

class Solution {
public:
	string getPermutation(int n, int k) {
		vector<char> nums;
		int factorial = 1;
		string res;
		for (int i = 1; i <= n; i++)
		{
			factorial *= i;
			nums.push_back(i + '0');
		}
		k--;
		for (int i = 0; i < n; i++)
		{
			factorial = factorial / (n - i);
			int select = k / factorial;
			res.push_back(nums[select]);
			for (int j = select; j < n - i - 1; j++)
				nums[j] = nums[j + 1];
			k = k % factorial;
		}
		return res;
	}
};



版权声明:本文为博主原创文章,未经博主允许不得转载。

[LeetCode]Permutation全排列和去重全排列

一、问题描述: 借助这道题总结一下全排列问题吧 https://leetcode.com/problems/permutations/ Given a collection of disti...
  • CristianoJason
  • CristianoJason
  • 2016年04月20日 14:02
  • 1959

LeetCode题解整理版(一)

Evaluate Reverse Polish Notation 逆波兰表达式求值,经典问题。 遇到数字入栈,遇到符号取栈顶的两个出来运算,再将结果入栈,最后栈里剩下的一个元素就是结果了。 ...
  • xualaleilei
  • xualaleilei
  • 2016年04月04日 17:30
  • 434

leetcode[60]Permutation Sequence 以及 全排列的编码与解码——康托展开 (附完整代码)

leetcode[60]Permutation Sequence 以及 全排列的编码与解码——康托展开 (附完整代码)...
  • Inuchiyo_china
  • Inuchiyo_china
  • 2017年04月20日 10:45
  • 323

LeetCode | Permutation Sequence(找到全排列中的第k个排列)

The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of ...
  • a45872055555
  • a45872055555
  • 2014年08月11日 16:49
  • 381

Permutation递归解法

permutation类型题的解法
  • a6219221
  • a6219221
  • 2016年09月07日 03:21
  • 425

排列组合(permutation)系列解题报告

本文讲解4道关于permutation的题目。 1. Permutation:输出permutation——基础递归 2. Permutation Sequence: 输出第k个permutatio...
  • abcjennifer
  • abcjennifer
  • 2014年10月18日 18:46
  • 9115

leetCode练习(60)

题目:Permutation Sequence 难度:medium 问题描述: The set [1,2,3,…,n] contains a total of n! unique permutati...
  • u010771890
  • u010771890
  • 2016年10月11日 14:32
  • 92

寻找排列数中的第k个数 Permutation Sequence

问题:The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling al...
  • luckyjoy521
  • luckyjoy521
  • 2014年03月24日 21:11
  • 1789

CF 482A(Diverse Permutation-相邻距离不同数为k的1~n全排列构造)

A. Diverse Permutation time limit per test 1 second memory limit per test 256 megabytes ...
  • nike0good
  • nike0good
  • 2014年10月31日 11:42
  • 1865

总结帖:全排列Permutation,子集subset 递归模板

两个经典递归模板,以前写过,现在再过一遍! 基本思路: 如果题目给的输入时数组,首先先要把数组转为ArrayList,因为ArrayList可以很方便地插入,删除,添加! 其次,递归函数的形式都一...
  • hellobinfeng
  • hellobinfeng
  • 2014年03月06日 05:51
  • 2946
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:leetcode 60:Permutation Sequence
举报原因:
原因补充:

(最多只允许输入30个字)