动态视图v$sysstat

*Soft parse ratio :这项将显示系统是否有太多硬解析。该值将会与原始统计数据对比以确保精确。例如,软解析率仅为0.2则表示硬解析率太高。不过,如果总解析量 (parse count total) 偏低,这项值可以被忽略。
公式:1 - (parse count (hard)/parse count (total))


select (1-(a.value/b.value))*100 "Soft parse ratio(%)" 
from v$sysstat a,v$sysstat b 
where a.name='parse count (hard)' and b.name='parse count (total)'


*Buffer cache hit ratio :该项显示buffer cache大小是否合适。


公式:    physical reads-physical reads direct-physical reads direct (lob)
     1- ---------------------------------------------------------------------------------- 
          db block gets+consistent gets-(physical reads direct+physical reads direct (lob))


select (1-(a.value-b.value-c.value)/(d.value+e.value-(b.value+c.value)))*100 "Buffer hit ratio" 
from 
     v$sysstat a,
     v$sysstat b,
     v$sysstat c,
     v$sysstat d,
     v$sysstat e
where 
     a.name='physical reads' and 
     b.name='physical reads direct' and 
     c.name='physical reads direct (lob)' and 
     d.name='db block gets' and 
     e.name='consistent gets';


*In-memory sort ratio :该项显示内存中完成的排序所占比例。最理想状态下,在OLTP系统中,大部分排序不仅小并且能够完全在内存里完成排序。
公式:sorts (memory)/ (sorts (memory)+sorts (disk))


select a.value/(a.value+b.value)*100 "In-memory sort ratio"
from v$sysstat a,v$sysstat b
where a.name='sorts (memory)' and b.name='sorts (disk)';


*Parse to execute ratio :在生产环境,最理想状态是一条sql语句一次解析多数运行。
公式:1 - (parse count/execute count)


select (1-(a.value/b.value))*100 "Parse to execute ratio"
from v$sysstat a,v$sysstat b
where a.name='parse count (total)' and b.name='execute count';


*Parse CPU to total CPU ratio :该项显示总的CPU花费在执行及解析上的比率。如果这项比率较低,说明系统执行了太多的解析。
公式:1 - (parse time cpu / CPU used by this session)


select (1-a.value/b.value)*100 "Parse CPU to total CPU ratio"
from v$sysstat a,v$sysstat b
where a.name='parse time cpu' and b.name='CPU used by this session';


*Parse time CPU to parse time elapsed :通常,该项显示锁竞争比率。这项比率计算是否时间花费在解析分配给CPU进行周期运算(即生产工作)。解析时间花费不在CPU周期运算通常表示由于锁竞争导致了时间花费
公式:parse time cpu / parse time elapsed


select (a.value /b.value)*100 "Parse time CPU to parse time elapsed"
from v$sysstat a,v$sysstat b 
where a.name ='parse time cpu' and b.name='parse time elapsed';


计算每个事务中block changes可用如下公式:
db block changes/( user commits+user rollbacks)


select a.value/(b.value+c.value) "db Block change"
from v$sysstat a,v$sysstat b,v$sysstat c
where a.name='db block changes' and b.name='user commits' and c.name='user rollbacks';


*Blocks changed for each read : 这项显示出block changes在block reads中的比例。它将指出是否系统主要用于只读访问或是主要进行诸多数据操作( 如: inserts/updates/deletes)
公式:db block changes / session logical reads


select a.value/b.value*100 "Blocks changed for each read"
from v$sysstat a,v$sysstat b
where a.name='db block changes' and b.name='session logical reads';


*Rows for each sort :每次排序的列
公式:sorts (rows)/(sorts (memory)+sorts (disk))


select (a.value/(b.value+c.value)) "Rows for each sort"
from v$sysstat a,v$sysstat b,v$sysstat c

where a.name='sorts (rows)' and b.name='sorts (memory)' and c.name='sorts (disk)';

详见《学习动态性能表(一)--v$sysstathttp://www.5ienet.com/note/html/vtables/vtables-v$sysstat.shtml

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
【4层】3100平米综合办公楼毕业设计(含计算书、建筑结构图) 、1资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 、1资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值