关闭

POJ 1458 Common Subsequence

标签: 算法ACM
57人阅读 评论(0) 收藏 举报
分类:

Question:
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab
programming contest
abcd mnp
Sample Output
4
2
0
题目大意:给出两个字符串,求其最大公共子序列的长度。
解题思路:就是一道裸的求最长公共子序列的题。
(http://acm.hust.edu.cn/vjudge/contest/125402#problem/E)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
LL dp[1005][1005];  
char s[1005],z[1005];
int main()
{
    while(~scanf("%s%s",s,z))
    {
        memset(dp,0,sizeof(dp));
        int len1=strlen(s);
        int len2=strlen(z);  //以前容易把这一步放进循环中,造成时间复杂度很高
        for(int i=1;i<=len1;i++)
        {
            for(int j=1;j<=len2;j++)
            {
                if(s[i-1]==z[j-1])
                    dp[i][j]=dp[i-1][j-1]+1;   //dp[i][j]表示i长度的字符串与j长度的字符串的相同字母
                else
                    dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        cout<<dp[len1][len2]<<endl;
    }
}

体会:这是一道裸的求最大公共子序列的题,只需记下模板,方便以后套用

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4253次
    • 积分:611
    • 等级:
    • 排名:千里之外
    • 原创:60篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类