给定两个数n,P,P为一个质数,且
下面所有的运算都在mod P意义下进行。
首先我们要判断是否有解。
根据勒让德记号,我们有nP−12=±1 ,并且上述问题有解当且仅当nP−12=1
设a,满足
那么最终我们有
问题是w−−√不存在,我们将w−−√如同虚数i一样设定,那么由于最终
证明:
x=(a+w−−√)P+12
x2=(a+w−−√)P+1=(a+w−−√)P∗(a+w−−√)
由二项式定理得:
(a+w−−√)P=∑Pk=0CkP∗ak∗(w−−√)P−k
又由于当0<k<P时,CkP mod P=0,所以
(a+w−−√)P=aP+(w−−√)P
又由费马小定理aP−1=1,wP−12=w−−√P−1=−1
所以
(a+w−−√)P=a−w−−√
所以x2=(a−w−−√)(a+w−−√)=a2−w=n
得证