二次剩余与Pell方程

二次剩余的定义:(该部分直接给定义 )

    考虑一个素数和一个不被p整除的整数a(即a不是p的倍数,0也是p的倍数)。如果有整数x,使得 x 2 ≡ a ( m o d   p ) x^{2} \equiv a (mod \ p) x2a(mod p),那么称a为p的二次剩余,也叫平方剩余;否则就称a为p的二次非剩余。
例如,2和4都是7的二次剩余
    关于加快二次剩余的计算,勒让德(A. M. Lagrange, 1752—1833)引入了如下记号,称为“勒让德符号”:
( a p ) = {    1 若 a 是 p 的 二 次 剩 余 − 1 若 a 是 p 的 二 次 非 剩 余 (\frac{a}{p})=\begin{cases}\ \ 1 & 若a是p的二次剩余\\-1&若a是p的二次非剩余\end{cases} (pa)={   11apap
    对一般的两个非零整数a, b(b>0) ,如果存在整数x,使得 x 2 ≡ a ( m o d   b ) x^2 \equiv a (mod \ b) x2a(mod b),那么称a是b的二次剩余,并记为 ( a b ) = 1 (\frac{a}{b})=1 (ba)=1,否则就称a是b的二次非剩余,记为 ( a b ) = − 1 (\frac{a}{b})=-1 (ba)=1。此时,称 ( a b ) (\frac{a}{b}) (ba)为雅可比符号(Carl Gustav Jacob Jacobi,1804—1851)。勒让德符号是雅可比符号的特例。
   从欧拉定理可以得出:p恰好有 p − 1 2 \frac{p-1}{2} 2p1个二次剩余(后面有这个的证明)。
   同时,有 ( a p ) ≡ a p − 1 2 ( m o d   p ) ( 后 面 有 这 个 式 子 的 证 明 ) (\frac{a}{p})\equiv a^{\frac{p-1}{2}} (mod \ p) (后面有这个式子的证明) (pa)a2p1(mod p)
   通过该公式,可计算出勒让德符号。由此有:
   a 为模p的二次剩余的充要条件为: a p − 1 2 ≡ 1 ( m o d   p ) a^{\frac{p-1}{2}}\equiv 1 (mod \ p) a2p11(mod p)
   a 为模p的二次非剩余的充要条件为: a p − 1 2 ≡ − 1 ( m o d   p ) a^{\frac{p-1}{2}}\equiv -1 (mod \ p) a2p11(mod p)
   对勒让德符号 ( a p ) (\frac{a}{p}) (pa)的计算,也可用下面的规则。对不同的奇素数p,q和不能被p整除的整数a,b,有下面的计算规则:
  (1) ( a b p ) = ( a p ) ( b p ) (\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p}) (pab)=(pa)(pb)
   (2) ( 1 p ) = 1 (\frac{1}{p})=1 (p1)=1
   (3) a ≡ b ( m o d   p ) ⇒ ( a p ) = ( b p ) a\equiv b(mod \ p) \Rightarrow (\frac{a}{p})=(\frac{b}{p}) ab(mod p)(pa)=(pb)
   (4) ( − 1 p ) = ( − 1 ) p − 1 2 , ( 2 p ) = ( − 1 ) p 2 − 1 2 (\frac{-1}{p})=(-1)^{\frac{p-1}{2}},(\frac{2}{p})=(-1)^{\frac{p^2-1}{2}} (p1)=(1)2p1,(p2)=(1)2p21

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值