二次剩余与Pell方程

二次剩余的定义:(该部分直接给定义 )

    考虑一个素数和一个不被p整除的整数a(即a不是p的倍数,0也是p的倍数)。如果有整数x,使得 x 2 ≡ a ( m o d   p ) x^{2} \equiv a (mod \ p) x2a(mod p),那么称a为p的二次剩余,也叫平方剩余;否则就称a为p的二次非剩余。
例如,2和4都是7的二次剩余
    关于加快二次剩余的计算,勒让德(A. M. Lagrange, 1752—1833)引入了如下记号,称为“勒让德符号”:
( a p ) = {    1 若 a 是 p 的 二 次 剩 余 − 1 若 a 是 p 的 二 次 非 剩 余 (\frac{a}{p})=\begin{cases}\ \ 1 & 若a是p的二次剩余\\-1&若a是p的二次非剩余\end{cases} (pa)={   11apap
    对一般的两个非零整数a, b(b>0) ,如果存在整数x,使得 x 2 ≡ a ( m o d   b ) x^2 \equiv a (mod \ b) x2a(mod b),那么称a是b的二次剩余,并记为 ( a b ) = 1 (\frac{a}{b})=1 (ba)=1,否则就称a是b的二次非剩余,记为 ( a b ) = − 1 (\frac{a}{b})=-1 (ba)=1。此时,称 ( a b ) (\frac{a}{b}) (ba)为雅可比符号(Carl Gustav Jacob Jacobi,1804—1851)。勒让德符号是雅可比符号的特例。
   从欧拉定理可以得出:p恰好有 p − 1 2 \frac{p-1}{2} 2p1个二次剩余(后面有这个的证明)。
   同时,有 ( a p ) ≡ a p − 1 2 ( m o d   p ) ( 后 面 有 这 个 式 子 的 证 明 ) (\frac{a}{p})\equiv a^{\frac{p-1}{2}} (mod \ p) (后面有这个式子的证明) (pa)a2p1(mod p)
   通过该公式,可计算出勒让德符号。由此有:
   a 为模p的二次剩余的充要条件为: a p − 1 2 ≡ 1 ( m o d   p ) a^{\frac{p-1}{2}}\equiv 1 (mod \ p) a2p11(mod p)
   a 为模p的二次非剩余的充要条件为: a p − 1 2 ≡ − 1 ( m o d   p ) a^{\frac{p-1}{2}}\equiv -1 (mod \ p) a2p11(mod p)
   对勒让德符号 ( a p ) (\frac{a}{p}) (pa)的计算,也可用下面的规则。对不同的奇素数p,q和不能被p整除的整数a,b,有下面的计算规则:
  (1) ( a b p ) = ( a p ) ( b p ) (\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p}) (pab)=(pa)(pb)
   (2) ( 1 p ) = 1 (\frac{1}{p})=1 (p1)=1
   (3) a ≡ b ( m o d   p ) ⇒ ( a p ) = ( b p ) a\equiv b(mod \ p) \Rightarrow (\frac{a}{p})=(\frac{b}{p}) ab(mod p)(pa)=(pb)
   (4) ( − 1 p ) = ( − 1 ) p − 1 2 , ( 2 p ) = ( − 1 ) p 2 − 1 2 (\frac{-1}{p})=(-1)^{\frac{p-1}{2}},(\frac{2}{p})=(-1)^{\frac{p^2-1}{2}} (p1)=(1)2p1,(p2)=(1)2p21

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Pell 方程是形如 $x^2-dy^2=1$ 的二元二次方程,其中 $d$ 是正整数,$x$ 和 $y$ 是正整数。求解 Pell 方程的一种经典方法是使用连分数。下面是求解 Pell 方程的步骤: 1. 首先,我们找到 Pell 方程的一个基本解 $(x_0,y_0)$,可以通过暴力枚举或使用其他方法来找到基本解。 2. 我们使用基本解 $(x_0,y_0)$ 来构造一个无限循环小数: $$\sqrt{d}=[a_0;\overline{a_1,a_2,\ldots,a_r,2a_0,\overline{a_1,a_2,\ldots,a_r,2a_0,\ldots}}]$$ 其中,$a_0=\lfloor\sqrt{d}\rfloor$,$a_i$ 是循环节中的数字。 3. 我们将这个无限循环小数表示为一个连分数: $$\sqrt{d}=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{\ldots+\frac{1}{2a_0+\frac{1}{a_1+\frac{1}{a_2+\ldots}}}}}}$$ 4. 我们使用连分数的递归公式,计算出前 $n$ 个连分数的值: $$\begin{aligned}&h_0=a_0, &k_0=1 \\ &h_1=a_0a_1+1, &k_1=a_1 \\ &h_i=a_ih_{i-1}+h_{i-2}, &k_i=a_ik_{i-1}+k_{i-2}\end{aligned}$$ 其中,$h_i$ 和 $k_i$ 分别表示连分数的第 $i$ 个逼近分数的分子和分母。 5. 我们可以证明,对于任意 $n$,$(h_n,k_n)$ 都是 Pell 方程的解。这是由连分数的性质所决定的。 6. 最终,我们可以得到 Pell 方程的所有正整数解 $(x,y)$,它们可以通过 $(x,y)=(x_0h_n+dy_0k_n,x_0k_n+y_0h_n)$ 来计算。 需要注意的是,如果循环节长度为奇数,则最后一个连分数的分母应该是 $2a_0$,否则应该是 $1$。此外,如果循环节长度为 $0$,则 $a_1$ 应该等于 $2a_0$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值