NYOJ 104 最大和 和POJ 1050 To the Max【动态规划】

36 篇文章 0 订阅
12 篇文章 0 订阅
博客探讨如何使用动态规划解决寻找矩阵中最大子矩阵和的问题。通过将多维问题转化为一维,将问题简化为最大子段和问题,从而找到解决方案。并提供了一维数组的最大子段和问题作为对比和联系。
摘要由CSDN通过智能技术生成

原题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=104

nyoj题是汉语的,很好理解,该题就是在一个矩阵中找到一个子矩阵,该子矩阵和最大!!输出最大和即可。。

思路:

首先你可能会想到穷举的方法,但当n很大时,显然是不可取的。。这个题应该是用dp来解决的。 

让我们先来看另外的一个问题(最大子段和问题): 给定一个长度为n的一维数组a,请找出此数组的一个子数组,使得此子数组的和sum=a[i]+a[i+1]+……+a[j]最大,其中i>=0,i<n,j>=i,j<n,例如 31 -41 59 26 -53  58 97 -93 -23 84     子矩阵59+26-53+58+97=187为所求的最大子数组。这个题会写吧,简单的dp。

代码:

   int maxSubArray(int n,int a[])
    {
        int b=0,sum=-10000000;
        for(int i=0;i<n;i++)
        {
             if(b>0) b+=a[i];
             else b=a[i];
             if(b>sum) sum=b;  
        }
        return sum;
    }//动态规划。

联系本题,二者区别呢?一个是一维的,一个是多维的,那么把多维转化为一维不就可以ac了。。

 假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
  | a11 …… a1i ……a1j ……a1n |
  | a21 …… a2i ……a2j ……a2n |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ar1 …… ari ……arj ……arn |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ak1 …… aki ……akj ……akn |
  |  .     .     .    .    .     .    .   |
  | an1 …… ani ……anj ……ann |

 那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
 (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
 由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

nyoj 和 poj 题目基本一样,只是输入格式 有区别,这里只给出 nyoj 的 代码。。

 
#include<stdio.h>
#include<string.h>
int ans[200][200];
int n,m,max;
void find (int k)
{
	int i,j,t=0;
	for(i=1;i<=m;i++)
	{
		if(t>0)
			t+= ans[k][i];
		else
			t= ans[k][i];
		if(t>max)
			max=t;
	}
}
int main()
{
	int a,b,c,ncase;
	scanf("%d",&ncase);
	while(ncase--)
	{
		scanf("%d%d",&n,&m);
		for(a=1;a<=n;a++)
		{
			for(b=1;b<=m;b++)
				scanf("%d",&ans[a][b]);
		}
		max=ans[1][1];
		for(a=1;a<=n;a++)
		{
			find(a);
			for(b=a+1;b<=n;b++)
			{
				for(c=1;c<=m;c++)
				{
					ans[a][c]+=ans[b][c];
				}
				find(a);
			}
		}
		printf("%d\n",max);
	}
}        


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值