原题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=104
nyoj题是汉语的,很好理解,该题就是在一个矩阵中找到一个子矩阵,该子矩阵和最大!!输出最大和即可。。
思路:
首先你可能会想到穷举的方法,但当n很大时,显然是不可取的。。这个题应该是用dp来解决的。
让我们先来看另外的一个问题(最大子段和问题): 给定一个长度为n的一维数组a,请找出此数组的一个子数组,使得此子数组的和sum=a[i]+a[i+1]+……+a[j]最大,其中i>=0,i<n,j>=i,j<n,例如 31 -41 59 26 -53 58 97 -93 -23 84 子矩阵59+26-53+58+97=187为所求的最大子数组。这个题会写吧,简单的dp。
代码:
int maxSubArray(int n,int a[])
{
int b=0,sum=-10000000;
for(int i=0;i<n;i++)
{
if(b>0) b+=a[i];
else b=a[i];
if(b>sum) sum=b;
}
return sum;
}//动态规划。
联系本题,二者区别呢?一个是一维的,一个是多维的,那么把多维转化为一维不就可以ac了。。
假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
| a11 …… a1i ……a1j ……a1n |
| a21 …… a2i ……a2j ……a2n |
| . . . . . . . |
| . . . . . . . |
| ar1 …… ari ……arj ……arn |
| . . . . . . . |
| . . . . . . . |
| ak1 …… aki ……akj ……akn |
| . . . . . . . |
| an1 …… ani ……anj ……ann |
那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
(ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。
#include<stdio.h>
#include<string.h>
int ans[200][200];
int n,m,max;
void find (int k)
{
int i,j,t=0;
for(i=1;i<=m;i++)
{
if(t>0)
t+= ans[k][i];
else
t= ans[k][i];
if(t>max)
max=t;
}
}
int main()
{
int a,b,c,ncase;
scanf("%d",&ncase);
while(ncase--)
{
scanf("%d%d",&n,&m);
for(a=1;a<=n;a++)
{
for(b=1;b<=m;b++)
scanf("%d",&ans[a][b]);
}
max=ans[1][1];
for(a=1;a<=n;a++)
{
find(a);
for(b=a+1;b<=n;b++)
{
for(c=1;c<=m;c++)
{
ans[a][c]+=ans[b][c];
}
find(a);
}
}
printf("%d\n",max);
}
}