题目大意:给定k位二进制下的n个数,求[l,r]区间内有多少个数能通过这几个数与非得到
首先观察真值表 我们有A nand A = not A
然后就有not ( A nand B ) = A and B
与和非都弄到了,我们就可以做出一切逻辑运算了,比如说或和异或
A or B = not ( ( not A ) and ( not B ) )
A xor B = ( A or B ) and ( A nand B )
然后我们对于位运算可以发现一个性质
对于某两位来说,如果对于每一个数,这两位上的值都是相同的,那么这两位无论怎么计算最终结果都会是相同的
比如说10(1010)和7(0111),第一位和第三位都是相同的,所以最后无论怎么计算,这两位都是一样的
然后我们这么处理:
对于每一位,我们枚举每一个数,若该数该位上为0,我们就对这个数取非
然后把所有数取与
该位上都是1,所以取与后一定是1;对于其他位,只要有这两位不同的数存在,那么这位一定是0
最后取与的结果中与该位全部相同的位都是1,其余都是0
对于每一位这样处理,标记去重,然后可以得到线性基,保证每一位存在且仅存在于线性基中的一个数上
拿去从大到小贪心处理即可 得到二进制序列即为答案
此题有坑 题目描述中1<=L<=R<=10^18 但是第七个点L=0 坑死一票人啊
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1010
using namespace std;
typedef long long ll;
int n,k;
ll digit,l,r,a[M],basis[70],tot;
bool v[70];
ll Get_Digit(ll x)
{
if(x==-1)
return -1;//坑比!!!
ll now=0,re=0;
int i;
for(i=1;i<=tot;i++)
if( (now|basis[i])<=x )
now|=basis[i],re|=(1ll<<tot-i);
return re;
}
int main()
{
//freopen("nand.in","r",stdin);
//reopen("nand.out","w",stdout);
int i,j;
ll now;
cin>>n>>k>>l>>r;
digit=(1ll<<k)-1;
for(i=1;i<=n;i++)
scanf("%lld",&a[i]);
for(i=k-1;~i;i--)
if(!v[i])
{
now=digit;
for(j=1;j<=n;j++)
if( a[j]&(1ll<<i) )
now&=a[j];
else
now&=~a[j]&digit;
basis[++tot]=now;
for(j=0;j<=i;j++)
if( now&(1ll<<j) )
v[j]=1;
}
cout<<Get_Digit(r)-Get_Digit(l-1)<<endl;
}
//lld