BZOJ 2337 HNOI2011 XOR和路径 期望DP+高斯消元

24 篇文章 0 订阅
14 篇文章 1 订阅

题目大意:给定一个无向连通图,从1出发,每次等概率沿着任意一条出边走到n为止,求路径上的边权的异或和的期望值

首先既然是位运算的问题我们的一般处理办法就是拆位,按位处理

对于每一位 令f[i]为从i节点出发到n的期望值

对于每条出边,如果这条边边权为1,那么f[x]+=f[y]/d[x] 否则f[x]+=(1-f[y])/d[x] 其中d[x]表示x的度数

特殊地,f[n]=1

由于这个图不是拓扑图,因此我们用高斯消元来解这个方程组,n个方程n个未知数(代码里写SB了- -)

解出方程后f[1]*2^k就是第k位对答案的贡献值

统计答案输出即可 注意边集不要开小 重边只要连一条

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define M 110
using namespace std;
struct abcd{
	int to,f,next;
}table[M*M<<1];
int head[M],tot;
int n,m,degree[M];
long double f[M][M],a[M],ans;
void Add(int x,int y,int z)
{
	degree[x]++;
	table[++tot].to=y;
	table[tot].f=z;
	table[tot].next=head[x];
	head[x]=tot;
}
void Gauss_Elimination()
{
	int i,j,k;
	for(i=1;i<n;i++)
	{
		k=0;
		for(j=i;j<n;j++)
			if( fabs(f[j][i]) > fabs(f[k][i]) )
				k=j;
		for(j=i;j<=n+1;j++)
			swap(f[i][j],f[k][j]);
		for(j=i+1;j<n;j++)
		{
			long double temp=-f[j][i]/f[i][i];
			for(k=i;k<=n+1;k++)
				f[j][k]+=f[i][k]*temp;
		}
	}
	for(i=n-1;i;i--)
	{
		for(j=i+1;j<=n;j++)
			f[i][n+1]-=f[i][j]*a[j];
		a[i]=f[i][n+1]/f[i][i];
	}
}
int main()
{
	int i,j,x,y,z;
	cin>>n>>m;
	for(i=1;i<=m;i++)
	{
		scanf("%d%d%d",&x,&y,&z);
		Add(x,y,z);
		if(x!=y) Add(y,x,z);
	}
	for(j=0;j<=30;j++)
	{
		memset(f,0,sizeof f);
		memset(a,0,sizeof a);
		for(x=1;x<n;x++)
		{
			for(i=head[x];i;i=table[i].next)
				if(table[i].f&(1<<j))
					f[x][table[i].to]+=1,f[x][n+1]+=1;
				else
					f[x][table[i].to]-=1;
			f[x][x]+=degree[x];
		}
		Gauss_Elimination();
		ans+=a[1]*(1<<j);
	}
	cout<<fixed<<setprecision(3)<<ans<<endl;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值