BZOJ 4011 HNOI2015 落忆枫音 拓扑序DP

博客探讨了如何解决BZOJ 4011题目的方法,该题目涉及在有向无环图(DAG)中添加边并计算以1为根的树形子图数量。通过朱刘算法的推论,得出原始答案,然后考虑新边引入后不合法方案的排除。采用动态规划(DP)进行计算,定义状态fi表示从某个节点y到节点i的路径上排除中间点的点集贡献,并给出动规方程和初始条件。

题目大意:给定一张有向无环图,现在要求加入一条边,求加入后以1为根的树形图个数
首先不考虑加入的这条边,那么这个图是一个DAG
由朱刘算法的推论可知,如果除根节点外每个点都选择一条入边,由于没有环,因此一定会形成一个树形图
因此答案就是 ni=2degreei 其中 degreei 表示第 i 个点的入度
现在加入这条边之后,我们仍然可以套用这个公式,但是这样就会有一些不合法的方案被统计进来,我们需要把这些不合法的方案减掉
一个方案如果不合法,那么一定会形成一个环,而环一定包含新加入的那条边
因此我们减掉的方案其实是:
Syx2jn,jSdegreej
然后我们就可以DP了
fi 表示 Syi2jn,jSdegreej
那么有动规方程
fi=jifjdegreei
初值
fy=ni=2degreeidegreey
注意 y=1 时要特判= =

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 200200
#define MOD 1000000007
using namespace std;
struct abcd{
    int to,next;
}table[M];
int head[M],tot;
int n,m,s,t;
int degree[M],_degree[M];
long long inv[M],f[M],ans=1;
void Add(int x,int y)
{
    table[++tot].to=y;
    table[tot].next=head[x];
    head[x]=tot;
}
void Linear_Shaker()
{
    int i;
    for(inv[1]=1,i=2;i<=m+1;i++)
        inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
}
void Topology_Sort()
{
    static int q[M];
    int i,r=0,h=0;
    f[t]=ans;
    for(i=1;i<=n;i++)
        if(!degree[i])
            q[++r]=i;
    while(r!=h)
    {
        int x=q[++h];
        (f[x]*=inv[_degree[x]])%=MOD;
        for(i=head[x];i;i=table[i].next)
        {
            (f[table[i].to]+=f[x])%=MOD;
            if(!--degree[table[i].to])
                q[++r]=table[i].to;
        }
    }
}
int main()
{
    int i,x,y;
    cin>>n>>m>>s>>t;
    Linear_Shaker();
    for(i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        Add(x,y);
        degree[y]++;
        _degree[y]++;
    }
    _degree[t]++;
    for(i=2;i<=n;i++)
        (ans*=_degree[i])%=MOD;
    if(t==1)
    {
        cout<<ans<<endl;
        return 0;
    }
    Topology_Sort();
    cout<<(ans-f[s]+MOD)%MOD<<endl;
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值