标准化,归一化和正则化

本文介绍了数据预处理中的重要步骤——标准化、归一化和正则化。标准化通常使用z-score方法,将数据转换为均值为0,标准差为1的分布。归一化包括min-max标准化和log归一化,常用于缩小特征的数值范围,提升模型收敛速度和精度。正则化则是将样本缩放到单位范数,常用于文本分类和聚类中,可以使用sklearn库的相关函数进行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.参考文献

关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
2017.6.3更新:
数据标准化/归一化normalization
归一化与标准化

1.标准化

用的最多的是 z-score标准化

公式为 (X - mean)/ std

计算时对每个属性(每列)分别进行。
将数据按其属性(一般是按列)减去其均值,并除以其标准差,得到的结果是,对每个属性来说,所有数据都聚集在0附近,方差为1.
实现方式:
1. 使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化。

from sklearn import preprocessing
import numpy as np
X=np.array([[1,-1,2],
            [2,0,0],
            [0,1,-1]])
X_scaled = preprocessing.scale(X)
>>>X_scaled
array([[0. ...,-1.22...,1.33...],
      [ 1.22...,  0.  ..., -0.26...],
      [-1.22...,  1.22..., -1.06...]])
处理后的均值和方差:
X_scaled.mean(axis=0)
array([0,0,0])
X_scaled.std(axis=0)
array([1,1,1])

2.
使用sklearn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值