目标跟踪综述

图像跟踪算法主要分为两类:基于视觉特征和目标定位方法。视觉特征包括颜色、边缘、光流、小波和局部特征描述子等,其中颜色和边缘特征因其鲁棒性被广泛应用。目标定位则涉及概率跟踪和确定性跟踪方法,如Bayesian滤波、粒子滤波和确定性模板匹配。这些方法在应对光照变化、形变和遮挡等问题时各有优势和局限,不断推动着图像跟踪技术的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        图像跟踪是一个不断发展的研究方向,新的方法不断产生,再加上其它学科的方法的引入,因此对于图像跟踪算法的分类没有确定的标准。对于所有的跟踪算法,需要解决两个关键问题:目标建模和目标定位[35]。以下根据目标建模所用的视觉特征和目标定位所用的方法对跟踪算法分类。
      1.据视觉特征分类:欲实现目标的准确定位需要以描述目标的视觉特征建立其表观模型。具有良好可分性的视觉特征,是实现对跟踪目标与视场背景精确分割与提取的关键,因此视觉特征的选择是实现鲁棒跟踪前提。若所选视觉特征具有较强可分性,即使简单的跟踪算法也能实现可靠跟踪。反之不然。常用的视觉特征分类如下:
        颜色:由于颜色特征具有较好的抗击平面旋转、非刚性变形以及部分遮挡的
能力,变形目标跟踪中表现出较强的鲁棒性,因此广泛的应用于视频跟踪的目标特征选择上。文献[56]中的基于颜色直方图跟踪算法(Color Histogram),采用Mean Shift算法实现对非刚性目标的鲁棒跟踪。此算法的不足表现在目标遮挡和相邻两帧出现较大的目标位移时,由于Mean Shift算法搜索区域局限于局部状态空间,此时会出现跟踪发散。为解决此问题,文献[57,58]中,由Perez等人和Nummiaro等人提出将颜色特征作为粒子滤波观测模型,实现了复杂环境下(目标遮挡)的可靠跟踪。此算法不足在于,当背景出现与目标颜色分布相似干扰物时,易造成粒子发散,因此Birchfield等人[39]提出空间-颜色直方图跟踪算法,充分利用像素点之间的空间关系而不局限于颜色分布,改善了跟踪性能。
       边缘:虽然颜色特征具有较好的抗目标形变的能力,但是缺乏对目标空间结构的描述,且对光照敏感。因此在光照变化频繁的跟踪视场下,常采用目标边缘特征。文献[40-44]将边缘信息作为目标可分性特征,从而实现可靠跟踪。由于颜色与边缘特征具有互补特性,因此将两种信息融合建立目标特征模型的算法,近年来引起研究者广泛关注[45-47]。上述基于边缘特征的跟踪算法存在计算耗时较长以及形状模型单一的问题,制约了跟踪算法的实时性及可靠性。因此文献[48-50]提出了基于边缘方位直方图特征的跟踪算法,此算法对光照变化不敏感且比单一轮廓边缘特征具有更丰富的信息。
      光流特征:光流特征通常是采用Lucak-Kande算法计算像素点光流的幅值和方向,文献[51]为利用光流实现人脸跟踪实例。由于光流法运算量较大很难满足实时性要求,并且光流法本身对光照变化和噪声敏感,都限制了光流法的实际应用。
       小波:由于金字塔可实现在不同角度、尺度上对图像进行描述的功能,这也是实现差分运动估计的基础[52,53]。
       局部特征描述子:图像的局部区域特征具有对光照、尺度、旋转的不变性。局部区域特征从局部区域内提取特征点,并以相应的描述子对其描述。文献[54,55]分别以局部二元模式和(SIFT)特征实现目标跟踪。
        空间与颜色融合:颜色特征描述目标全局颜色分布,属于全局信息,虽然具有一定的抗目标形变能力,但由于缺乏对像素间空间结构的描述易受到背景中相似颜色分布区域的干扰,文献[56,57]将空间信息与颜色直方图融合,作为目标特征取得了良好的跟踪效果。
       特征基(Eigen-Basis):将图像信息从高维空间映射到低维空间,图像在低维空间成为一个流形,通过一定的几何、统计工具可以提取和分析。PCA、LDA是图像跟踪领域构建子空间广泛采用的方法。特征跟踪(Eigen-Tracking)方法[18,58-61]以Karhunen-Loeve构建表征目标表观的特征基,再通过递增SVD实现对特征基的在线更新。文献[62]以局部线性嵌入流形LLE将跟踪问题映射到非线性低维流型空间去解决。
       模式分类:利用分类器将跟踪目标从背景中分割出来是以模式分类的方法解决视频跟踪问题。文献[64,65]同时强调目标与背景的重要性,通过特征评价算法建立对目标和背景具有良好可分性的的视觉特征实现跟踪。Avidan[65]以支持向量机SVM离线学习得到目标与背景特征,称为支持向量机跟踪算法(SVM-Tracking)。文献[67]利用集成学习将弱分类器(Adaboost方法训练得到弱分类器)组合成强分类器,由此强分类器实现对视频帧中目标与背景分类,即像素分类置信图(Confidence Map)
### 多目标跟踪的技术综述目标跟踪是计算机视觉领域中的一个重要任务,其目的是从视频序列中准确地检测并持续跟踪多个移动对象。近年来,在深度学习技术快速发展的推动下,基于深度学习的多目标跟踪算法在提升准确性与鲁棒性上获得了显著进步[^1]。 #### 主要挑战 多目标跟踪面临的主要挑战包括但不限于: - **遮挡处理**:当不同物体相互遮挡时如何保持稳定的轨迹关联。 - **外观变化**:由于光照、姿态等因素引起的同一物体表观特征的变化。 - **尺度变换**:被跟踪的目标可能随时间发生大小上的改变。 - **背景杂波干扰**:复杂背景下区分前景目标的能力。 #### 流行的方法和技术 目前较为流行的一些方法可以分为两大类: ##### 基于检测器的方式 这类方法通常先利用强大的目标检测模型获取每一帧图像中的候选框位置信息,再通过某种形式的数据关联机制建立跨帧之间的联系。例如SORT (Simple Online and Realtime Tracking) 和 Deep SORT 就是在此基础上进行了优化改进,后者引入了更高级别的特征描述子来增强识别能力。 ##### 联合建模方式 另一种思路则是尝试构建端到端可训练框架,直接从未标注数据中同时学习检测和跟踪两个任务的知识表示。如FairMOT采用共享卷积神经网络结构分别提取空间及时序维度下的特征向量,并设计特定损失函数促进两者间有效融合。 #### 性能评估标准 对于多目标跟踪效果的好坏评判,常用的一个综合性评价指标称为多目标跟踪准确度(Multi-Object Tracking Accuracy, MOTA),它综合考虑漏检率、误报次数以及身份切换错误等多个因素的影响程度[^2]。 ```python import numpy as np from sklearn.metrics import accuracy_score def calculate_mota(gt_tracks, pred_tracks): """ Calculate Multi Object Tracking Accuracy. Parameters: gt_tracks : list of ground truth tracks pred_tracks : list of predicted tracks Returns: mota score as float value between 0 and 1 """ # Simplified example calculation; actual implementation would be more complex matches = [] for i in range(len(gt_tracks)): if gt_tracks[i]['id'] == pred_tracks[i]['id']: matches.append(1) else: matches.append(0) return accuracy_score(np.ones_like(matches), matches) ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值