- 博客(58)
- 资源 (12)
- 收藏
- 关注
原创 基于yolov5的人脸检测实现
以下是基于YOLOv5实现人脸检测的详细步骤及代码实现,包含从数据准备到模型部署的全流程: 一、环境配置。1. 在models/yolo.py中添加HAM模块。2. 配置文件yolov5s-face.yaml。2. 数据标注转换(Python实现)1. 导出TorchScript格式。1. 数据配置文件face.yaml。2. TensorRT加速部署。3. TensorRT推理示例。3. 动态数据增强实现。
2025-02-19 14:41:56
21
原创 基于机器学习的人脸识别方法探讨
通过卷积神经网络、人脸嵌入、损失函数优化等技术,人脸识别的准确率和效率得到了显著提升。然而,人脸识别仍然面临数据多样性、隐私安全、计算资源等多方面的挑战。未来,随着多模态融合、轻量化模型、隐私保护等技术的发展,人脸识别将在更多领域得到广泛应用,并进一步提升其性能和安全性。机器学习在人脸识别领域的应用是计算机视觉中最成功的案例之一。以下是机器学习在人脸识别中的应用、关键技术、流程及挑战的详细说明。通过对训练数据进行增强(如旋转、缩放、裁剪、添加噪声等),提高模型的泛化能力。4. 机器学习在人脸识别中的挑战。
2025-02-19 13:33:58
227
原创 人脸识别综述
人脸识别技术在过去几十年中取得了显著进展,尤其是深度学习技术的引入,极大地提升了识别的准确性和鲁棒性。未来,随着多模态融合、轻量化模型、隐私保护等技术的发展,人脸识别将在更多领域得到广泛应用,并进一步提升其性能和安全性。其核心任务是通过分析人脸图像或视频,提取独特的特征信息,并与数据库中的已知人脸进行比对,从而实现身份验证或识别。以下是人脸识别技术的综述,涵盖其基本概念、关键技术、应用场景、挑战及未来发展方向。① 卷积神经网络(CNN):CNN是当前人脸识别的主流方法,能够自动学习人脸的高层次特征。
2025-02-19 11:56:42
422
原创 AlexNet图像分类算法
AlexNet 是一个经典的卷积神经网络(CNN)架构,由 Alex Krizhevsky 等人在 2012 年提出,并在 ImageNet 图像分类竞赛中取得了突破性的成绩。AlexNet 的成功标志着深度学习在计算机视觉领域的崛起。以上展示了如何使用 PyTorch 实现 AlexNet 模型,并在 CIFAR-10 数据集上进行训练和测试。下面是一个使用 PyTorch 实现 AlexNet 进行图像分类的示例代码。我们将使用 CIFAR-10 数据集进行训练和测试。8. 加载模型并进行预测。
2025-02-19 10:47:27
338
原创 DenseNet图像分类算法
DenseNet(Densely Connected Convolutional Networks)是一种用于图像分类的深度学习模型,由Gao Huang等人在2017年提出。DenseNet通过密集连接的方式,使得每一层都直接连接到所有后续层,从而增强了特征传播和重用,减少了参数数量,并提高了模型的性能。实际实现时可以根据需要调整模型结构、数据集和超参数来适应不同的任务。PyTorch的`torchvision.models`模块中已经提供了预定义的DenseNet模型。7. 加载模型并进行推理。
2025-02-19 10:32:43
6
原创 ResNet图像分类
ResNet(Residual Network)是一种非常流行的深度学习模型,特别适用于图像分类任务。ResNet通过引入“残差连接”(residual connections)解决了深层网络中的梯度消失问题,使得训练非常深的神经网络成为可能。我们可以使用TorchVision中预定义的ResNet模型,也可以自己定义一个简单的ResNet模型。以上展示了如何使用PyTorch实现ResNet模型进行CIFAR-10图像分类任务。如果你有GPU,建议将模型和数据移动到GPU上进行训练,以加速训练过程。
2025-02-19 10:21:56
104
原创 GoogleNet图像分类算法
GoogleNet 的 Inception 模块通过多尺度特征提取提高了模型的表达能力,适合处理复杂的图像分类任务。可以根据需要调整模型结构或超参数,以适应不同的任务和数据集。GoogleNet(也称为 Inception v1)是由 Google 团队提出的一种深度卷积神经网络架构,以其高效的 Inception 模块和多层分类器著称。GoogleNet 的核心是 Inception 模块,它通过并行使用不同大小的卷积核来提取多尺度特征。3. 定义 GoogleNet 模型。4. 数据预处理和加载。
2025-02-19 10:00:18
4
原创 VGGNet 图像分类实现
VGGNet 是一种经典的卷积神经网络 (CNN) 架构,由牛津大学的 Visual Geometry Group 提出。VGGNet 以其简单的结构和深度著称,通常由多个卷积层和池化层堆叠而成。以下是使用 PyTorch 实现 VGGNet 进行图像分类的步骤。VGGNet 的结构简单但非常有效,适合作为深度学习入门的学习模型。可以根据需要调整模型结构或超参数,以适应不同的任务和数据集。VGGNet 有多个变体(如 VGG11、VGG16、VGG19),这里我们实现一个简单的 VGG16 模型。
2025-02-19 09:51:21
4
原创 Vision Transformer图像分类实现
Vision Transformer (ViT) 是一种基于 Transformer 架构的图像分类模型。与传统的卷积神经网络 (CNN) 不同,ViT 将图像分割成多个小块(patches),并将这些小块视为序列输入到 Transformer 中。以下是使用 PyTorch 实现 Vision Transformer 进行图像分类的步骤。在实际应用中可以根据需要调整模型的超参数,如 `embed_dim`、`depth`、`n_heads` 等,以适应不同的任务和数据集。4. 数据预处理和加载。
2025-02-19 09:29:22
171
原创 调用开源模型实现OCR识别
这些服务通常提供免费试用或按量计费的方式。3. 示例:调用百度 OCR API。2. 开源 OCR 工具**1. 使用 OCR 服务。
2025-02-18 11:00:57
352
原创 OCR识别
OCR(光学字符识别,Optical Character Recognition)的流程通常包括以下几个步骤。4. 字符分割(Character Segmentation)5.字符识别(Character Recognition)3. 文本检测(Text Detection)6. 后处理(Post-Processing)示例:OCR 识别流程的代码实现。
2025-02-18 10:14:12
234
原创 通义千问大模型接口改写文章
如果你无法直接调用通义千问 API,可以考虑使用阿里云的 DashScope 平台(通义千问的开放平台),通过 HTTP 请求调用 API。以下是 DashScope 的示例:DashScope API 示例。通过以上方法,你可以轻松调用通义千问 API 实现文章改写!3. 调用通义千问 API 实现文章改写。2. 安装阿里云 Python SDK。
2025-02-17 14:49:36
382
原创 同花顺数据爬取并生成K线
要使用Python爬取同花顺股票数据并生成K线图,你可以按照以下步骤进行。我们将使用`requests`库来获取数据,`pandas`来处理数据,`matplotlib`来绘制K线图。以下是一个简单的示例,假设你已经找到了一个可以获取股票数据的API。使用`mplfinance`库来生成K线图。`mplfinance`是专门用于绘制金融图表的库,支持K线图、成交量图等。如果你无法通过API获取数据,可以考虑使用`selenium`模拟浏览器操作来获取数据,但这通常会更复杂且效率较低。
2025-02-17 08:38:07
387
原创 K线生成流程
在Python中,你可以使用 `matplotlib` 和 `mplfinance` 库来绘制股票的K线图(蜡烛图)。`mplfinance` 是一个专门用于绘制金融图表的库,它基于 `matplotlib`,并且提供了简单易用的接口来绘制K线图。你可以参考 `mplfinance` 的官方文档了解更多高级用法:[mplfinance 文档](https://github.com/matplotlib/mplfinance)首先,确保你已经安装了 `mplfinance` 和 `pandas` 库。
2025-02-14 10:36:09
293
原创 A股数据获取
爬取A股数据通常涉及从金融网站或API获取股票市场数据。以下是一个简单的Python示例,使用`requests`库和`BeautifulSoup`库从新浪财经爬取A股数据。如果你需要更复杂的数据分析,可以考虑使用`pandas`库来处理和分析数据,或者使用`matplotlib`库来绘制股票走势图。首先,确保你已经安装了`requests`和`BeautifulSoup`库。这些API通常需要注册并获取API密钥,具体使用方法可以参考各自的文档。
2025-02-14 10:32:33
159
原创 股票自动化交易
股票自动化交易是指通过编写程序自动执行股票买卖操作,以减少人为干预,提高交易效率和准确性。Python作为一种功能强大且易于上手的编程语言,广泛应用于金融领域,尤其是在量化交易和自动化交易中。本文使用Alpaca交易平台(支持模拟交易和实盘交易)来执行自动化交易。本文介绍了如何使用Python实现一个简单的股票自动化交易系统,包括数据获取、策略制定、信号生成、订单执行和风险管理。需要注意的是,自动化交易涉及金融风险,建议在实盘交易前充分测试策略,并严格遵守风险管理规则。在实际交易中,风险管理至关重要。
2025-02-13 18:02:27
714
原创 行人属性识别:从图像中提取行人特征
行人属性识别(Pedestrian Attribute Recognition, PAR)是计算机视觉领域的一个重要任务,旨在从图像或视频中识别出行人的各种属性,如性别、年龄、衣着、携带物品等。本文将介绍行人属性识别的基本概念,并通过一个简单的代码示例展示如何使用深度学习模型来实现这一任务。本文介绍了行人属性识别的基本概念,并通过一个简单的代码示例展示了如何使用深度学习模型来实现这一任务。3. 属性分类:最后,基于提取的特征,使用分类器来预测行人的属性。:包含100,000张图像,标注了26种行人属性。
2025-02-13 16:10:46
479
原创 也谈deepseek本地部署
如果你有更多需求(如自定义训练、模型微调等),可以深入研究 Hugging Face 的 `transformers` 库和 PyTorch 的高级功能。你可以使用 `transformers` 库直接加载模型。如果你希望将 DeepSeek 模型部署为一个 API 服务,可以使用 `Flask` 或 `FastAPI`。如果你的机器有 GPU,可以使用 PyTorch 的 GPU 支持来加速推理。如果你的机器有多个 GPU,可以使用 PyTorch 的分布式训练和推理功能。3.2 将模型移动到 GPU。
2025-02-11 18:16:02
501
原创 streamlit打包
最近在用streamlit实现完成项目的时候,遇到一个大坑,就是如果将streamlit工程打包成exe。并且在此文件夹下新建一个“hook-streamlit.py”的文件,内容如下。③、找到项目中刚才生成的streamlit_test.spec文件。①、首先需要在工程目录下新建一个“hooks”的文件夹。然后再dist目录下即可生成有效的可执行文件。②、用常用的命令来执行打包操作。增加修改如下部分内容。
2025-01-14 21:24:55
259
原创 CBLPRD-330k数据集提取车牌数据
②、该数据集包含各种各样的车牌数据,其中有拖拉机绿牌、新能源小汽车、普通蓝牌等几十种种类的车牌类型。③、该数据集没有对应,需要依据配置文件data.txt来进行解析。配置文件的形式如下:包含文件名称、车牌号码、以及车牌类型。因项目需要,只需要单层车牌,并且不需要“学”等特殊车牌。① 、首先该数据集包含342110张车牌数据。1、CBLPRD-330k车牌数据集介绍。1),先过滤掉双层车牌以及拖拉机绿牌。2)过滤掉 特殊车牌。
2025-01-14 14:51:22
289
原创 CCPD数据集提取车牌数据集
车牌字典:[‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’,‘Y’, ‘Z’, ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’]0_0_22_27_27_33_16:车牌号码映射关系如下: 第一个0为省份 对应省份字典provinces中的’皖’,;025:车牌区域占整个画面的比例;
2025-01-03 10:37:29
488
原创 CCPD数据集转yolo格式
车牌字典:[‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’,‘Y’, ‘Z’, ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’]0_0_22_27_27_33_16:车牌号码映射关系如下: 第一个0为省份 对应省份字典provinces中的’皖’,;025:车牌区域占整个画面的比例;
2025-01-02 15:47:23
611
原创 白莉爱吃巧克力全套Cosplay资源
在这个充满无限想象与创意的时代,Cosplay作为一种独特的艺术表现形式,正逐渐走进越来越多人的视野。从动漫、游戏到影视,Cosplay让我们有机会将心中的角色形象化为现实,用服装、化妆、道具和表演,诠释我们对角色的理解和热爱。Cosplay的魅力在于细节,而高品质的服装与道具则是打造完美角色的关键。在Cosplay资源宝库中,你可以找到由专业设计师精心打造的服装,从面料选择到裁剪工艺,都力求还原角色原貌。同时,还有各类精致道具,无论是复杂的武器还是小巧的饰品,都能让你在Cosplay中更加出彩。
2025-01-02 11:29:22
349
原创 VAM本体整合包,本体人物卡
有 Archer CMA Freeer HCG Mai Mrdong Passerby Reacg Solerrain Thorn Vam-YJ Vmax ZHFX yesmola 不动 大老刘(Big_liu) 可樂(Dnaddr) 老夫子(Andifang)再额外赠送国漫人物,朱竹清,宁荣荣,小舞,胡列娜,柳神,比比东,萧薰儿,阿银,千仞雪,雅妃,云韵,云曦,南宫wan,月婵,赵灵儿,美杜莎17个系列人物场景。所见即所得解压既玩。所有场景共 纯付费压缩包资源,全是分类调试,可直接使用,附带本体与教程。
2024-11-17 16:13:31
3050
原创 车牌检测识别功能实现(pyqt)
基于pyqt+yolov5+lprnet网络实现车牌检测识别系统。用yolov5实现车牌检测定位,用lprnet网络实现车牌号码的识别,借助pyqt实现界面展示,展示最终的结果。包含图像与视频检测识别
2024-05-06 19:03:07
586
原创 手机app爬虫配置(模拟机)
pem证书转.cer证书:openssl x509 -outform der -in xxx.pem -out xxx.cer。根据hash开头的值作为.pem的文件名注意后缀(.0):将FiddlerRoot.pem改为269953fb.0。修改代理服务器与端口号(代理服务器为本电脑的ip,端口号为fiddler软件配置的端口号)直接进行 证书安装,会提示 证书不被信任,所以需要安装 openssl对证书进行处理。1)进入 HTTPS 页面,进行相关配置,按照下图的设置进行配置即可。
2023-10-30 11:03:41
798
原创 车牌检测识别功能实现
本博文将结合前面训练好的模型来实现车牌的检测与识别。并用tkinter实现界面。最终通过检测车牌检测的前后时间来实现 时间与费用的统计计算展示。
2023-06-25 14:36:09
222
VisionTransformer图像分类
2024-05-08
VGGNet图像分类算法
2024-05-08
GoogleNet图像分类算法
2024-05-08
pyqt+yolo+lprnet车牌检测识别系统
2024-05-06
ResNet图像分类算法
2024-05-06
DenseNet图像分类
2024-05-05
AlexNet图像分类
2024-05-04
图像视频的车牌检测系统
2024-04-26
目标检测数据集的扩充升级版
2024-04-11
目标检测数据集扩充程序
2023-12-04
基于深度学习的摔倒检测
2023-03-06
基于yolov5的猪体(pig)识别
2023-03-04
牛(cow)目标检测数据集
2023-03-04
牛(cow)数据集,VOC格式
2023-03-04
基于深度学习的钢筋端面识别
2023-03-04
yolov5牛体检测识别
2023-02-28
tkinter实现图像与视频中的人员统计
2023-02-27
前后端实现口罩检测与人脸识别
2023-02-19
python-flask-vue实现前后端人体与车辆属性检测
2023-02-18
基于yolov6的安全帽检测
2022-10-18
基于yolov5的安全帽检测
2022-10-18
keep_spider.py
2021-07-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人