1035. 插入与归并(25)
时间限制
200 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue
根据维基百科的定义:
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。
归并排序进行如下迭代操作:首先将原始序列看成N个只包含1个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下1个有序的序列。
现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?
输入格式:
输入在第一行给出正整数N (<=100);随后一行给出原始序列的N个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。
输出格式:
首先在第1行中输出“Insertion Sort”表示插入排序、或“Merge Sort”表示归并排序;然后在第2行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行末不得有多余空格。输入样例1:
10 3 1 2 8 7 5 9 4 6 0 1 2 3 7 8 5 9 4 6 0输出样例1:
Insertion Sort 1 2 3 5 7 8 9 4 6 0输入样例2:
10 3 1 2 8 7 5 9 4 0 6 1 3 2 8 5 7 4 9 0 6输出样例2:
Merge Sort 1 2 3 8 4 5 7 9 0 6
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int N;
int A1[101], A2[101]; // 原始序列A1 中间序列A2
int i, j;
cin>>N;
for( i=0; i<N; i++ ) cin>>A1[i];
for( i=0; i<N; i++ ) cin>>A2[i];
for( i=0; A2[i]<=A2[i+1] && i<N-1; i++ );// i作为有序序列最后一个元素下标退出循环
for( j=++i; A1[j]==A2[j] && j<N; j++ );// A1 A2从 第一个无序的元素开始 逐一比对
if( j==N ){// 前半部分有序而后半部分未改动可以确定是插入排序
cout<<"Insertion Sort"<<endl;
sort( A1, A1+i+1 );
}
else{
cout<<"Merge Sort"<<endl;
int k = 1;
int flag=1; //用来标记是否归并到 “中间序列”
while( flag )
{
flag = 0;
for( i=0; i<N; i++ )
if( A1[i]!=A2[i] )
flag = 1;
k*=2;
for( i=0; i<N/k; i++ )
sort( A1+i*k, A1+(i+1)*k );
for( i=k*(N/k); i<N; i++ ) // 对 非偶数序列的“尾巴”进行排序
sort( A1+k*(N/k), A1+N );
}
}
cout<<A1[0];
for( i=1; i<N; i++ )
cout<<" "<<A1[i];
cout<<endl;
return 0;
}