pytorch
「已注销」
这个作者很懒,什么都没留下…
展开
-
YOLO v2目标检测详解三 去除无效数据
在从文件读入标注的数据时,会把物体数量向物体最多的那张图补齐,补齐的时候会添加进不少无效的框,最后计算的时候需要将这部分无效数据去除,添加的无效数据为(0,0,0,0),现在需要将这部分数据去掉#把添加的无效数据去除def gt_mask_from_gts(gts): gt_stk = gts.view(-1, 4) invalid_gt = torch.Tensor([0...原创 2020-04-10 19:44:36 · 505 阅读 · 0 评论 -
YOLO v2目标检测详解二 计算iou
IoU 作为目标检测算法性能 mAP 计算的一个非常重要的函数。IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。常见的两个框的交集情况有以下六种iou的计算方式是:重叠面积/(总面积-重叠面积)就按照yolo v2常用数据进行举例...原创 2020-04-08 21:14:30 · 1940 阅读 · 0 评论 -
YOLO v2目标检测详解一box生成与转换
yolo v2会将图片切割成若干个大小为32*32 的小格子,因此,将图片传入时,图片的长和宽都必须是32的倍数,如下所示:后面的内容中,如果没有说明,都是指的小格子。yolo v2中的box中的数据并不是平常的xmin,ymin,xmax,ymax,而是,offset_x,offset_y,w,h,分别代表的意思是:box中心x坐标在小格子的比例,box中心y坐标在小格子的比例,宽和小格...原创 2020-04-07 21:25:48 · 1246 阅读 · 0 评论 -
PyTorch 维度变换
view,reshape。a = torch.rand(4,1,28,28)print(a.shape)b = a.view(4,28*28)print(b)print(b.shape)b = a.view(4*28,28)print(b.shape)b = a.view(4*1,28,28)print(b.shape)b = a.view(4,784)#不建议使用...原创 2020-04-05 22:43:15 · 272 阅读 · 0 评论 -
PyTorch 索引与切片
indexing#从第0维往后排a = torch.rand(4,3,28,28)print(a[0].shape)print(a[0,0].shape)print(a[0,0,0].shape)print(a[0,0,0,0])从前或者后面全取#从第0维往后排a = torch.rand(4,3,28,28)#取最前面的print(a[:2].shape)p...原创 2020-04-05 21:12:18 · 232 阅读 · 0 评论 -
PyTorch 创建Tensor
import from numpy,从numpy引入。a = np.array([2,3.3])torch.from_numpy(a)a = np.ones([2,3])torch.from_numpy(a)print(a)注意:小写的tensor接受的参数是现有的数据,大写的Tensor接受的数据的维度,大写也可以接受现有数据,必须以list形式表示出。import fr...原创 2020-04-05 18:58:44 · 290 阅读 · 0 评论 -
线性回归问题实战
以函数y = w*x+b为例进行讲解。假设w*1+b = 12w*2+b = 21那么我们可以求解出w = 9,b = 3。但提供给我们的数据可能受到一定的污染,和原来的数值有一定出入,但和原来值出入不大,如下图所示:这样的图形无法用一个函数完整表示所有的点,可以用一条直线穿过这些点,使得误差最小那么如何才能选择一条合适的直线通过呢?首先我们选取一条和x轴重...原创 2020-04-03 17:59:09 · 403 阅读 · 0 评论 -
梯度下降算法详解--机器学习
梯度下降(gradient descent)算法是一种非常经典的求极小值的算法,其理论基础是梯度的概念。先从一个生活中的问题引入梯度下降的概念。假设在一个夜晚,你处于一座山峰的顶端,你需要从山顶回到山底的营地,由于没有其他的照明设备,你只能不断通过周围的环境来调整自己的方向,比如,你现在所处的位置比前一时刻低那么你处于下降过程中。由于我们都希望能够尽快下山,因此我们会选择一条下降速度...原创 2020-04-03 17:24:36 · 1385 阅读 · 0 评论 -
visdom无法正常启动
控制台输入python -m visdom.server提示Downloading scripts, this may take a little while第一步:找到visdom下面的sever,使用了anconda,则在anconda下面的Lib\site-packages中找visdom目录,另外创建了其他环境则在对应的环境下查找。没有使用anconda则在AppData中查找,...原创 2020-03-09 10:17:05 · 966 阅读 · 0 评论