关闭

非递归遍历树

334人阅读 评论(0) 收藏 举报

这题在大二学数据结构的时候就做过了,老师多次强调,当时自己也会做。但是现在又忘记了。

以下算法主要是转载,另外还添加了自己的理解  http://blog.csdn.net/liwenjia1981/article/details/5728917

前序,中序,后续非递归遍历树的标准算法

 在中国源码网上发现了这三个算法,据说是标准算法,算法的整体思想就是(以中序为例):

1、先设一个栈s和一个指向树根的指针p,用p指指向结点的lchild并顺其而下直到p==NULL跳出循环,在这一过程中把从根节点到最左节点过程中经过的每个结点(包括最左结点)入栈,则此时的p指向的是树的最左结点。             
2、栈顶元素出栈以访问最左结点

3、访问最左结点的根结点。
4、由于将右子树理解为一个子树,对其的遍历也是采用中序遍历的方法,故将右子树的根结点理解为开始遍历树时的根结点,故设置下一个要遍历的树的根节点为p=p->rchild,开始对这个树的遍历,p指针又会走遍该子树的每一个结点。

 

本贴给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法。
1.先序遍历非递归算法
#define maxsize 100
typedef struct
{
    Bitree Elem[maxsize];
    int top;
}SqStack;
void PreOrderUnrec(Bitree t)
{
    SqStack s;
    StackInit(s);
    p=t;
    
    while (p!=null || !StackEmpty(s))
    {
        while (p!=null)             //遍历左子树(push进栈类似于遍历)
        {
            visite(p->data);    // 1先访问根节点,再进栈。
            push(s,p);           // 2. 节点已经访问,为什么还要进栈呢?因为它的右子树还没有访问。
            p=p->lchild;       
        }//endwhile
        
        if (!StackEmpty(s))         //取出下一棵要遍历的树的根节点
        {
            p=pop(s);
            p=p->rchild;        // 遍历右子树,并将自己删除(pop)
        }//endif
                
    }//endwhile 
    
}//PreOrderUnrec
2.中序遍历非递归算法
#define maxsize 100
typedef struct
{
    Bitree Elem[maxsize];
    int top;
}SqStack;
void InOrderUnrec(Bitree t)
{
    SqStack s;
    StackInit(s);
    p=t;
    while (p!=null || !StackEmpty(s))
    {
        while (p!=null)             //遍历左子树(push进栈类似于遍历)
        {
            push(s,p);          // 为什么要进栈呢?因为它的右子树还没有访问,而且它自身也还没有访问。这点跟先序遍历不同。
            p=p->lchild;        
        }//endwhile
        
        if (!StackEmpty(s))
        {
            p=pop(s);
            visite(p->data);        // 1. 出栈后再访问根节点,这点与先序遍历刚好相反。
            p=p->rchild;            // 2. 取出下一棵要遍历的树的根节点。

                                         // 遍历右子树,并将自己删除(pop)
        }//endif   
    
    }//endwhile
}//InOrderUnrec
3.后序遍历非递归算法

(这个算法是三种遍历里面最难的,因为根节点最后才访问。)
#define maxsize 100
typedef enum{L,R} tagtype;
typedef struct 
{
    Bitree ptr;
    tagtype tag;
}stacknode;
typedef struct
{
    stacknode Elem[maxsize];
    int top;
}SqStack;
void PostOrderUnrec(Bitree t)
{
    SqStack s;
    stacknode x;
    StackInit(s);
    p=t;
    

  //事实上,这里的循环终止条件完全可以跟先序遍历和中序遍历一样。

// 即while (p!=null || !StackEmpty(s))。不知道作者为什么写成do while。
    do 
    {
        while (p!=null)        //遍历左子树(进栈相当于遍历)
        {
            x.ptr = p; 
            x.tag = L;         //标记为左子树(这点非常重要,下面标记为右子树也很重要。)
            push(s,x);
            p=p->lchild;
        }
    
        while (!StackEmpty(s) && s.Elem[s.top].tag==R)   //为什么在这里访问节点,而不在遍历右子树之后再访问?因为这是通过栈来模拟,节点的右子                                                                                       // 树可能已经遍历了,所以这里要判断节点的右子树是否已经遍历了。                                                                                                                           // 也就是说,访问节点的代码在遍历右子树之前,但是实际上节点的访问是在右子树之后

        {
            x = pop(s);
            p = x.ptr;
            visite(p->data);   //tag为R,表示右子树访问完毕,故访问根结点。                                    

        }
        
        if (!StackEmpty(s))
        {

            s.Elem[s.top].tag =R; 

            p=s.Elem[s.top].ptr->rchild;  // 取出下一个要遍历的树的根节点。

                                                        // 注意:这里只取右子树的根,但是没有删除自己(没有pop)。为什么?因为自己还没有访问,遍历完右子树之后再访问自                                                             //己。这点跟先序遍历和中序遍历不同,先序遍历和后序遍历都是先访问根节点再遍历右子树。这正是后序遍历的                                                         //难点之一。 

        }    
    }while (!StackEmpty(s));
}//PostOrderUnrec 


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:190940次
    • 积分:2444
    • 等级:
    • 排名:第15724名
    • 原创:70篇
    • 转载:35篇
    • 译文:0篇
    • 评论:8条
    最新评论