【第22期】观点:IT 行业加班,到底有没有价值?

动态规划总结

原创 2016年05月31日 23:13:17

动态规划总结



  所谓动态规划,就是先求取局部最优解,最后来得到全局最优解。或者是,先求得当前阶段的最优解,最后得到全部阶段结束后的最优解。
  当求局部最优解时,也不能只是仅仅着眼于局部,而是考虑着全局,在符合全局的目标和条件下来求解局部最优解(这点有点像现实中的规划)。
  既然重点是求局部,那么要弄清从哪里开始,到哪里结束。更要弄清开始时怎么设计,结束时和中间部分又是怎么设计,需不需要特殊的设定。
  只有真正将对应的问题理解透彻,才能将对应的动态规划算法写好。
  要弄清是用一个横向的结构来实现 如:蜜蜂爬蜂房,还是树形结构来实现 如:数塔问题,亦或矩阵结构来实现 如:求最长上升子序列的长度,这是具体实现算法的基础。

  做过的题中,有很多是背包问题,它们的结构都很相似,往往都是两层循环,外层对物品进行遍历,内层对背包的容量进行遍历。
  虽然背包问题看着都很相似,但要想真正解决问题依然需要对问题有完全的认识和掌控,需要对细节滴水不漏的考量,也只有这样,才能在一些变化比较大的问题里游刃有余,不被固定的格式所限制,如:反向考虑的背包

  专心每步,着眼全局。
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

动态规划总结

Leetcode Distinct Subsequences 动态规划法活用总结

Distinct Subsequences <span style="color: rgb(51,51,51); font-family: 'Helvetica N
  • bcyy
  • bcyy
  • 2014-02-19 05:12
  • 38

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

动态规划_方法总结

动态规划方法总结 1. 按状态类型分 写在前面: 从状态类型分,并不表示一题只从属于一类。其实一类只是一种状态的表示方法。可以好几种方法组合成一个状态,来解决问题。 ...

动态规划学习之三种方法解决斐波拉契数

斐波拉契数是一个很经典的问题,也会很多公司面试的考题,每个学习计算机的同学都会接触这个问题,尤其是在学习递归的时候,利用递归来解决斐波拉契数是很多教材采用的一个例子,所以很多同学一想到斐波拉契马上就会采用递归,递归貌似简单,但是效率真的很高吗?不然!下面是我在学习动态规划的过程中总结的集中解决斐波拉...

动态规划专题总结!

经过三个星期的学习,基本上了解了ACM中难度最高的 动态规划(DP),整体上对它有了大体的认识,克服了它,就回发现收获很多!!还是需要多看题,多做题!!下面,对动态规划的知识点进行一个总结      ...

【算法导论】贪心算法,递归算法,动态规划算法总结

一般实际生活中我们遇到的算法分为四类: 一&gt;判定性问题 二&gt;最优化问题 三&gt;构造性问题<
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)