3.1
全加器:三个输入两个输出,输入端分别为相加数Xi、Yi,低位进位输入Ci。输出端分别是和数Si、高位进位输出Ci+1
半加器:相较于全加器,半加器没有进位输入,其内部逻辑只有一个异或门,用于产生和数一个与门,用于产生进位输出
算术移位:分为算术左移和算术右移。其中算数左移n位相当于乘上2n,执行方法是把原来的数中每一位都向左移动n个位置,左面移出的高位丢弃不要,右面低位空出的位置上全部补0,当符号位发生改变时表明发生了溢出。算术右移时,符号位保持不变,其余各位依次右移,最右边一位移出,将符号位拷贝到左边空出的位,一次移位相当于除2。
逻辑移位:逻辑左移n位的执行方法,是把原来的数中每一位都向左移动n个位置,左面移出的高位丢弃不要,右面低位空出的位置上全部补"0"。 逻辑右移n位的执行方法是把原来数中的每一位都向右移动n个位置,右面移出的低位丢弃不要,左面高位空出的位置上全部补0。
阵列乘法:采用类似手工乘法运算的方法,用大量与门产生手工乘法中的各乘积项,同时将大量一位全加器按照手工乘法算式中需要进行加运算的各相关项的排列方式组成加法器阵列。
恢复余数除法:比较被除数(余数)与除数的大小是用减法实现的。对原码除法而言,由于操作数以绝对值的形式参与运算,因此,相减结果为正(余数的符号位为0)说明够减,商上1;相减结果为负(余数的符号位为1)说明不够减,商上0。
不恢复余数除法:又称加减交替法,是对恢复余数法的改进。不恢复余数法的特点是不够减时不再恢复余数,而根据余数的符号作相应处理就可继续往下运算,因此运算步数固定,控制简单,提高了运算速度。
阵列除法:类似于阵列乘法器的思想,为了加快除法的执行速度,也可以采用阵列除法器来实现除法。为简化运算及阵
本文详细解析了计算机组成原理中运算方法与运算器的相关概念,包括全加器、半加器、算术移位与逻辑移位的区别,阵列乘法与除法的实现原理,以及浮点数运算的对阶、规格化和溢出判断。此外,还讨论了C语言中整数运算的机器数表示和移位操作的影响。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



