图像处理、计算机图形学、计算机视觉和模式识别领域的区别和联系

(先汇总,后续整理)

三者之间既有区别,又有联系。 

计算机图形学是给定关于景象结构、表面反射特性、光源配置及相机模型的信息,生成图像。 
而计算机视觉是给定图象,推断景象特性实现的是从模型到图像的变换,也就是说从图象数据提取信息,包括景象的三维结构,运动检测,识别物体等。 
模式识别则是从特征空间到类别空间的变换。研究内容包括特征提取(PCA,LDA,LFA,Kernel,Mean Shift,SIFT,ISOMAP,LLE);特征选择;分类器设计(SVM,AdaBoost)等。 

总之,计算机图形学是计算机视觉的逆问题,两者从最初相互独立的平行发展到最近的融合是一大趋势。图像模式的分类是计算机视觉中的一个重要问题,模式识别中的许多方法可以应用于计算机视觉中。

图形学讲的是图形,也就是图形的构造方式,是一种从无到有的概念,从数据得到图像。

数字图像处理是对已有的图像进行变换、分析、重构,得到的仍是图像。

PR本质就是分类,根据常识或样本或二者结合进行分类,可以对图像进行分类,从图像得到数据。


Computer Graphics和Computer Vision是同一过程的两个方向。Computer Graphics将抽象的语义信息转化成图像,Computer Vision从图像中提取抽象的语义信息。Image Processing探索的是从一个图像或者一组图像之间的互相转化和关系,与语义信息无关。

先说区别:
Computer Graphics,简称 CG 。输入的是对虚拟场景的描述,通常为多边形数组,而每个多边形由三个顶点组成,每个顶点包括三维坐标、贴图坐标、rgb颜色等。输出的是图像,即二维像素数组。
Computer Vision,简称 CV。输入的是图像或图像序列,通常来自相机或usb摄像头。输出的是对于图像序列对应的真实世界的理解,比如检测人脸、识别车牌。
Digital Image Processing,简称 DIP。输入的是图像,输出的也是图像。Photoshop中对一副图像应用滤镜就是典型的一种图像处理。常见操作有模糊、灰度化、增强对比度等。

再说联系:
CG 中也会用到 DIP,现今的三维游戏为了增加表现力都会叠加全屏的后期特效,原理就是 DIP,只是将计算量放在了显卡端。
CV 更是大量依赖 DIP 来打杂活,比如对需要识别的照片进行预处理。
最后还要提到近年来的热点——增强现实(AR),它既需要 CG,又需要 CV,当然也不会漏掉 DIP。它用 DIP 进行预处理,用 CV 进行跟踪物体的识别与姿态获取,用 CG 进行虚拟三维物体的叠加。

简单点说吧,1 计算机视觉,里面人工智能的东西更多一些,不仅仅是图像处理的知识,还涵盖了人工智能,机器学习等领域知识;2,计算机图形学,主要涉及图形成像及游戏类开发,如opengl等,还有就是视频渲染等;3,图像处理,这个主要针对图像图像的基本处理,如图像检索或则图像识别,压缩,复原等等操作。以上只是本人字面理解


计算机图形学数字图像处理是比较老的技术。计算机视觉要迟几十年才提出。
计算机图形学数字图像处理的区别在于图形图像
图形是矢量的、纯数字式的。图像常常由来自现实世界的信号产生,有时也包括图形
图像图形都是数据的简单堆积,计算机视觉要从图像中整理出一些信息或统计数据,也就是说要对计算机图像作进一步的分析。
以上是它们的区别,下面来说联系:
计算机图形学的研究成果可以用于产生数字图像处理所需要的素材,计算机视觉需要以数字图像处理作为基础。计算机视觉数字图像处理的这种关系类似于物理学数学的关系。

你可以多看看浙大周昆的文章,周昆是计算机图形学这个领域的领军人物
另外,你如果不是浙江大学的或者中科院计算所的,不建议做这个方向,难度太大(图形比图像虽然表面上只高一维,但实际上工作量大了好多倍;其次,图像,国内外差距目前已经很小,好发重要期刊;图形,除上面两个单位和微软外,国内外差距很大,不好发重要期刊)


数字图像处理主要是对已有的图像,比如说可见光的图像、红外图像、雷达成像进行噪声滤除、边缘检测、图像恢复等处理,就像用ps 处理照片一样的。人脸识别啊、指纹识别啊、运动物体跟踪啊,都属于图像处理。去噪有各种滤波算法;其他的有各种时频变化算法,如傅里叶变化,小波变换等,有很多这方面的书籍。
图形学主要研究如何生成图形的,像用autoCAD作图,就是图形学中算法的应用。各种动漫软件中图形算法的生成等。

03-19
### IEEE 802.1Q VLAN Tagging Protocol Standard IEEE 802.1Q 是支持虚拟局域网(VLAN)的标准协议之一,通常被称为 Dot1q。该标准定义了一种用于以太网帧的 VLAN 标记系统以及交换机和桥接器处理这些标记帧的操作流程[^2]。 #### 协议结构概述 IEEE 802.1Q 的核心功能在于通过在以太网数据帧中插入特定字段来实现 VLAN 标签的功能。这种标签使得网络设备能够识别哪些流量属于哪个 VLAN,并据此执行转发决策。具体来说: - **Tag Header**: 在原始以太网帧头部增加了一个额外的 4 字节字段作为 VLAN 标签头。这四个字节包含了以下部分: - **Priority Code Point (PCP)**: 使用 3 比特表示优先级级别,范围从 0 到 7,主要用于 QoS 控制。 - **Canonical Format Indicator (CFI)**: 这是一个单比特位,在传统以太网环境中设置为零。 - **VLAN Identifier (VID)**: 使用 12 比特标识具体的 VLAN ID,理论上可以支持多达 4096 个不同的 VLAN(编号从 0 至 4095),其中某些特殊值保留给内部用途或管理目的。 #### 数据包处理机制 当一个带有 VLAN tag 的数据包进入支持 IEEE 802.1Q 的交换机时,它会依据此标签决定如何路由或者过滤该数据流。如果目标端口不属于同一 VLAN,则不会传输至其他无关联的物理接口上;反之亦然——只有相同 VLAN 成员之间才允许互相通信除非经过路由器跨网段访问[^1]。 此外,为了简化管理和配置过程并增强互操作性,还引入了一些辅助性的子协议和服务组件比如 GARP(通用属性注册协议)。GARP 可帮助分发有关 VLAN 成员资格的信息到各个连接节点以便动态调整其行为模式而无需频繁手动干预[^3]。 以下是创建带 VLAN TAG 的 Python 示例代码片段展示如何模拟构建这样的 Ethernet Frame: ```python from scapy.all import Ether, Dot1Q, IP, sendp def create_vlan_packet(src_mac="00:aa:bb:cc:dd:ee", dst_mac="ff:ff:ff:ff:ff:ff", vlan_id=100, src_ip="192.168.1.1", dst_ip="192.168.1.2"): ether = Ether(src=src_mac, dst=dst_mac) dot1q = Dot1Q(vlan=vlan_id) ip_layer = IP(src=src_ip, dst=dst_ip) packet = ether / dot1q / ip_layer return packet packet = create_vlan_packet() sendp(packet, iface="eth0") # Replace 'eth0' with your network interface name. ``` 上述脚本利用 Scapy 库生成包含指定源地址、目的地址及所属 VLAN 编号的数据报文并通过选定的网卡发送出去测试实际效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值