关闭

坚持学习法的路线

575人阅读 评论(0) 收藏 举报
分类:

车辆跟踪算法已经做了大半年了(实际时间不到一半),有看了GMM和VIBE的效果,还是要坚持学习法的路线。

通过对Haar Like特征的补充,在原来的5种垂直和水平特征之外,再加上5种旋转特征,对大车的效果有所提升(小车本来就没问题的)。

另加上TLD的tracking部分,算是一个独立的解决方案。此tracking算法虽无理论创新,技巧却是突破,值得纪念。

只是现在要与背景法融合,为了融合而融合,哎。

幸而,学习法仍在继续,对特征做进一步分析,显示卷积图像(类似Gabor滤波)、统计每种特征在正负样本中的平均值、探索HOG特征。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:52604次
    • 积分:921
    • 等级:
    • 排名:千里之外
    • 原创:38篇
    • 转载:0篇
    • 译文:0篇
    • 评论:56条
    文章分类
    最新评论