关闭

BZOJ 2818: Gcd区间内最大公约数 为素数的对数(欧拉函数的应用)

标签: 欧拉函数筛法
3031人阅读 评论(0) 收藏 举报
分类:

传送门
2818: Gcd

Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 3649 Solved: 1605
[Submit][Status][Discuss]
Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4
HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Source

湖北省队互测

解题思路:
这个题是让求的<=n的GCD(x,y)==素数的个数(2,4)和(4,2)认为是不一样的,那么我们可以想到枚举每一个素数,让其GCD(x,y)=p,那么我们可以想到在[1,y/p]内与y/p互素的个数(在这里默认 y>x),那么我们就是求一个欧拉函数值,那么我们将其扩展到1-n区间内,就是求[1,n/p]的欧拉函数值,但是我们需要求的是sigmaEualr(n/p)的前缀和,因为y是从1-n之间取的,所以对数就是sum[n/p]*2-1,因为是对数,而且还有重复的情况(自身是素数的情况)

具体详见代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using namespace std;

typedef long long LL;
const LL MAXN = 1e7+5;
bool prime[MAXN];///标记数组是不是素数
LL phi[MAXN];///欧拉函数值,i的欧拉函数值=phi[i]
LL p[MAXN];///素因子的值
LL cnt = 0;
void get_Phi()///筛法求欧拉函数
{
    cnt = 0;
    memset(prime, true, sizeof(prime));
    phi[1] = 1;
    for(LL i=2; i<MAXN; i++)///线性筛法
    {
        if(prime[i])///素数
        {
            p[cnt++] = i;
            phi[i] = i-1;///素数的欧拉函数值是素数 - 1
        }
        for(LL j=0; j<cnt; j++)
        {
            if(i*p[j] > MAXN)
                break;
            prime[i*p[j]] = false;///素数的倍数,所以i*p[j]不是素数
            if(i%p[j] == 0)///性质:i mod p == 0, 那么 phi(i * p) == p * phi(i)
            {
                phi[i*p[j]] = p[j] * phi[i];
                break;
            }
            else
                phi[i*p[j]] = (p[j]-1) * phi[i];///i mod p != 0, 那么 phi(i * p) == phi(i) * (p-1)
        }
    }
}
LL sum[MAXN];///前缀和
void get_sum()
{
    memset(sum, 0, sizeof(sum));
    for(LL i=1; i<MAXN; i++)
        sum[i] = sum[i-1]+phi[i];
}
int main()
{
    get_Phi();
    get_sum();
    LL n;
    while(~scanf("%lld",&n))
    {
        LL ans = 0;
        for(LL i=0; i<cnt&&p[i]<=n; i++)
        {
            ans = ans+sum[n/p[i]]*2-1;
        }
        printf("%lld\n",ans);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:467359次
    • 积分:10892
    • 等级:
    • 排名:第1624名
    • 原创:634篇
    • 转载:5篇
    • 译文:0篇
    • 评论:93条
    博客专栏