容斥原理/莫比乌斯反演/欧拉函数/线性筛专题

欧拉函数

线性筛

杜教筛

莫比乌斯反演

容斥原理


HDU2588 GCD

欧拉函数

给定N,M,求1<=X<=N 且gcd(X,N)>=M条件下X的个数

#include<bits/stdc++.h>
using namespace std;
int euler(int n)
{
    int ans=n;
    for(int i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            ans-=ans/i;
            while(n%i==0) n/=i;
        }
    }
    if(n>1) ans-=ans/n;
    return ans;
}
int main()
{
    int t,n,m;
    scanf("%d",&t);
    while(t--)
    {
        int ans=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i*i<=n;i++)
        {
            if(n%i!=0) continue;
            if(i>=m) ans+=euler(n/i);//i*(n/i)==n
            if(n/i>=m&&i*i!=n) ans+=euler(i);
        }
        printf("%d\n",ans);
    }
    return 0;
}
/*
1<=x<=n,gcd(x,n)>=m
x=s*a<=n(a<=n/s),n=s*b(n%s==0); gcd(a,b)==1(a=prim); m<=s<=n; 
*/

BZOJ2818 Gcd

线性筛

给定N,1<=x,y<=N, 满足gcd(x,y)==prim  条件下可选的 ( x,y ) 对数。

#include<bits/stdc++.h>
using namespace std;
const int MAX=1e7+5;
bool mark[MAX];
int phi[MAX],prim[MAX],tot;
long long sum[MAX];
void phi_prim(int n)
{
    memset(mark,0,sizeof(mark));
    phi[1]=1;tot=0;
    for(int i=2;i<=n;i++)
    {
        if(!mark[i]){prim[++tot]=i;phi[i]=i-1;}
        for(int j=1;j<=tot;j++)
        {
            int x=prim[j];
            if(i*x>n) break;
            mark[i*x]=1;
            if(i%x==0){phi[i*x]=phi[i]*x;break;}
            else phi[i*x]=phi[i]*phi[x];
        }
    }
}
int main()
{
    int n;
    long long ans=0;
    scanf("%d",&n);
    phi_prim(n);
    for(int i=1;i<=n;i++) sum[i]=sum[i-1]+phi[i];
    for(int i=1;i<=tot;i++) ans+=sum[n/prim[i]]*2-1;
    printf("%lld\n",ans);
    return 0;
}
/*
1<=x,y<=n; gcd(x,y)=prim
x=s*a,y=s*b; s=prim, gcd(a,b)==1
ans+=phi[a]*2-1;
*/

杜教筛

const int MAX=1e7+5;
bool vis[MAX];
int prim[MAX],mu[MAX],fac[MAX],tot,pcnt;
map<long long,long long>dp;
void moblus()
{
    mu[1]=1;tot=0;
    for(int i=2;i<MAX;i++)
    {
        if(!vis[i]) {prim[tot++]=i;mu[i]=-1;}
        for(int j=0;j<tot&&i*prim[j]<MAX;j++)
        {
            vis[i*prim[j]]=1;
            if(i%prim[j]) mu[i*prim[j]]=-mu[i];
            else {mu[i*prim[j]]=0;break;}
        }
    }
    for(int i=2;i<MAX;++i) mu[i]+=mu[i-1];
}
long long M(long long x)
{
    if(x<MAX) return mu[x];
    if(dp[x]) return dp[x];
    long long sum=1;//phi->x*(x+1)/2;
    for(long long l=2,r;l<=x;l=r+1)
    {
        r=x/(x/l);
        sum-=M(x/l)*(r-l+1);
    }
    return dp[x]=sum;
}

2018徐州ICPC网络赛D Easy Math 莫比乌斯反演/杜教筛

莫比乌斯反演

莫比乌斯反演的本质是容斥

反演分为两种形式:

①约数型

对于等式              F\left ( n \right )=\sum_{d|n}^{ }f\left ( d \right ) 

可以得到             f\left ( n \right )=\sum_{d|n}^{ }u\left ( d \right )F\left ( \frac{n}{d}\right )

②倍数型

对于等式             F\left ( n \right )=\sum_{n|d}^{ }f\left ( d \right )

可以得到             f\left ( n \right )=\sum_{n|d}^{ }u\left ( \frac{d}{n} \right )F\left ( d \right )

HDU1695 GCD 转载

#include<bits/stdc++.h>
using namespace std;
const int MAX=1e5+5;
bool vis[MAX];
int prim[MAX],mu[MAX],tot;
void moblus()
{
    memset(mu,0,sizeof(mu));
    memset(prim,0,sizeof(prim));
    memset(vis,0,sizeof(vis));
    mu[1]=1;tot=0;
    for(int i=2;i<MAX;i++)
    {
        if(!vis[i]) {prim[tot++]=i;mu[i]=-1;}
        for(int j=0;j<tot&&i*prim[j]<MAX;j++)
        {
            vis[i*prim[j]]=1;
            if(i%prim[j]) mu[i*prim[j]]=-mu[i];
            else {mu[i*prim[j]]=0;break;}
        }
    }
}
int main()
{
    int t,a,b,c,d,K;
    moblus();
    scanf("%d",&t);
    for(int tc=1;tc<=t;tc++)
    {
        long long ans1=0,ans2=0;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&K);
        if(K==0) {printf("Case %d: 0\n",tc);continue;}
        b/=K,d/=K;
        int n=min(b,d);
        for
  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值