关闭

LintCode:将二叉树拆成链表453

/** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * TreeNode(int val) { * this->val = val; * this->left = this->right =...
阅读(62) 评论(0)

LintCode:字符串置换211

Hash表思路,时间复杂度为O(n),附加空间复杂度O(n)class Solution { public: /* * @param A: a string * @param B: a string * @return: a boolean */ //思路:将字符串中的每一个值映射到hash表中,统计出现次数,然后比较是否相等 boo...
阅读(99) 评论(0)

LintCode:二叉树的路径和276

/** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * TreeNode(int val) { * this->val = val; * this->left = this->right =...
阅读(49) 评论(0)

LintCode:单例204

//单例设计模式 class Solution { public: /** * @return: The same instance of this class every time */ static Solution* getInstance() { // write your code here if(pInstance ==...
阅读(108) 评论(0)

LintCode:二叉树的最大节点632

原题地址:http://www.lintcode.com/zh-cn/problem/binary-tree-maximum-node/#class Solution { public: /** * @param root the root of binary tree * @return the max node */ Solution(){...
阅读(70) 评论(0)

LintCode:删除链表中的元素452

原地址:http://www.lintcode.com/zh-cn/problem/remove-linked-list-elements//** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(...
阅读(70) 评论(0)

七月机器学习之贝叶斯方法

先验概率与后验概率 事情还没有发生,要求这件事情发生的可能性的大小,是先验概率. 事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率. 一、先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为“由因求果”问题中的“因”出现。后验概率是指在得到“结果”的信息后重新修正的概率,如贝叶斯公式中的,是“执果寻因”问题中的“因”。先验概率与后验概率有不可分割的...
阅读(276) 评论(0)

七月机器学习之决策树随机森林和adaboost11

信息是对不确定性的度量 平均互信息是衡量两个概率分布之间的相似性,互信息高那么相似性就比较大 他们之间的运算关系都在这个图里 I是互信息 熵减去条件熵就是互信息 条件熵是衡量差异性的 也就是说,之前的不确定性减去之后的不确定性等于不确定性的减少,不确定性的减少意味着确定性的增加,实际上就是我们寻找的相关性 主要理解ID3即可 A是特征,D是标签label 决策树的面试会问 由以下...
阅读(391) 评论(0)

七月机器学习项目实战之特征工程6城市自行车共享系统使用状况

特征工程小案例Kaggle上有这样一个比赛:城市自行车共享系统使用状况。提供的数据为2年内按小时做的自行车租赁数据,其中训练集由每个月的前19天组成,测试集由20号之后的时间组成。本项目功能:数据清理,特征提取,标准化连续值特征,离散性数据实现one-hot编码 本项目数据及源码:https://github.com/qiu997018209/MachineLearning#先把数据读进来 imp...
阅读(1213) 评论(0)

七月机器学习之推荐系统9

一个叫准确度,一个叫召回 长尾效应是说,热门的有很多人喜欢,但是个性化的,不同的人有不同的喜好,但是数量较少 马太效应是说,只推荐热门的东西 I是商品集 H是信息熵,在所有的Pi都相等的时候,熵最大,它可以更精准的定义覆盖率 u为均值 同一部电影,不同的用户,u是均值 同一个用户,不同的电影 SVD矩阵的分解...
阅读(224) 评论(0)

在eclipse+pydev环境下安装scipy的办法

1.卸载anaconda并重启2.安装pip包,用来装软件的 Python -m pip install -U pip setuptools3.将python的安装路径和Scripts路径添加到PATH路径去。 添加Scripts是为了能着找到pip命令 C:\Users\qiujiahao\Downloads\python-2.7.13.amd64\Scripts\ C:\Users\qi...
阅读(351) 评论(0)

七月机器学习之特征工程6

随机取样:可能无法表征所有的情况 分层采样:对不同的年龄段(举例)进行采样大多数算法对正负样本都是很敏感的 下采样:比如正样本很多,我们在正样本中抽取数据,使得正负样本一样多 如果正样本比负样本大很多,建议你取采集更多的数据 selectKBest选择与y相关度最高的k个数据 l1正则化是截断,也就是说不相关的就截断,权重为0,selectfrommodel可以选出大于权重0的特征...
阅读(309) 评论(0)

七月机器学习之工作流程与模型调优7

本图包含了实际工作中的所有情况,须仔细阅读 1.wrapper包裹型 1.当数据小于50的时候,需要去采集更多的数据 2.category分类:是连续值的预测还是离散值的预测 3.分类,回归,聚类(cluster), 1.分为train,cv,test,train用来建模,cv是交叉验证集用来帮助我们做参数和模型的选择,test用来测试模型效果 实际工作中很少自己实现一个模型,大多都是...
阅读(191) 评论(0)

七月机器学习之回归分析与工程应用5

线性回归用于解决连续值预测的问题,逻辑回归用于解决分类的问题,但是实际上通常用来分类,因为它输出的是一个概率这三个概念面试一定会问!!!! 拿到损失函数->对损失函数进行梯度下降->求出最优解,正则化是为了防止过拟合,降低波动线性回归是假定输入和输出间是有线性相关的 不同的算法的损失函数的定义不同 这种情况说的是入参只有一个的时候,当斜率为负数的时候,值会变大,就会继续往前,当为正数的时候就会...
阅读(199) 评论(0)

七月机器学习之凸优化初步4

切记切记,数学基础决定了你机器学习能走多远!!!KKT用于有约束条件的求极值点...
阅读(207) 评论(0)

七月机器学习之矩阵分析与应用3

线性代数的基本知识 线性相关就是一个向量能被另一个向量表示出来 基是子空间的最大线性无关组 此处一个子空间是一个平面,再加一个不共面的向量就可以组成R3,它一定是R3的一部分 A到U实际上是化简,将第一行乘以-3加到第二行,ux=0可以找到两个线性无关的解 列空间和左零空间在一起就构成了Rn的空间,它是与列空间垂直的那一个空间 PCA降维的本质就是舍弃小的特征值,保留大的特征值 核...
阅读(169) 评论(0)

七月机器学习之数理统计与参数估计2

概率是已经知道整体求某一个事件的概率,统计是已经知道某一个事件的概率求整体的分布情况非常重要: 方差用于衡量随机变量偏离期望的程度 协方差非常重要:面试经常问 可基于协方差矩阵来筛选特征 二阶导数大于0,即斜率在增加就是凸函数...
阅读(204) 评论(0)

七月在线之机器学习与相关数学初步1

它的意义在于将多项式与三角函数间建立了联系...
阅读(335) 评论(0)

sklearn中基础库函数笔记

sklearn中的cross validation模块,最主要的函数是如下函数: sklearn.cross_validation.cross_val_score。他的调用形式是scores = cross_validation.cross_val_score(clf, raw data, raw target, cv=5, score_func=None) 参数解释: clf是不同的分类器,...
阅读(333) 评论(0)

机器学习项目实战之用户流失预警

from __future__ import division import pandas as pd import numpy as npchurn_df = pd.read_csv("D:\\test\\machineLearning\\churn.csv") col_names = churn_df.columns.tolist()print "Column_names:" print col...
阅读(722) 评论(0)
61条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:20243次
    • 积分:773
    • 等级:
    • 排名:千里之外
    • 原创:59篇
    • 转载:2篇
    • 译文:0篇
    • 评论:6条
    文章存档
    最新评论