经典口误

        1、周末回家,晚饭后烟瘾犯了,打算借口去散步。在门口换鞋时,老爸问我干吗去?我说:“去散个烟!”结果老爸从我身上搜出一包白沙,狠狠K了我一顿。

  2、一次从妈妈那里出来后到老婆那里去,看见老婆后,习惯性的叫了一声:“妈!”

  3、早上上班,发现自行车没气了,于是想叫妈妈推到门外打气。结果我说:“把我的轮胎推出去。”妈妈迷糊了,我笑着连忙改正,结果又说成:“帮我的汽车打点气!”

  4、一次我开车,坐我旁边的女同事突然问:“你怎么开车不系安全套的?”

  5、一次在厕所方便,没纸了。就对老婆说:“把擦纸的屁股拿来!”

  6、一个女孩失恋了,我劝她:“两条腿的蛤蟆不好找,三条腿的男人有的是啊!”

  7、两个人斗嘴,突然旁边一人冒出来一句:“你们真是吃饱了事情没饭做啊!”

  8、同事和人争执,急了张口来了句:“你以为我吃饭长大的啊?”我一直纳闷他到底吃什么长大的。

  9、上电脑课,一同学的机器有问题,于是大喊;“老板,换机子!”

  10、边吃饭边看帖子,边念经典的给老婆听,笑死她了,于是她对我说:“吃完饭再看吧,不然脑子消化不良!”

  11、一次问一个近视的人眼睛多少度,他本想说400度的,结果一出口就成了400瓦,肚子痛死!

  12、一次教育局领导视察课间操,结束后,本应由体育老师宣布“解散”,但一时情急,忘词了,憋了半天,大喊:“撤退!”

  13、一体育系学生上实习课时,很多老师听课,他太紧张,最后要解散队伍时,一时脑子空白,硬憋了句:“全体注意,立正!闪!!”

  14、一群同学去郊区同学家玩。我们买了几个西瓜放在厨房。叫一个同学去拿刀切,好久不见回来,正疑惑间,他手里捧着个切开的瓜来了,惊慌地说:我把南瓜给切了。大家狂笑,但两秒钟后,大家更是笑翻,原来他手里捧着个冬瓜!

  15、高中有一老师姓江,酷似罗家英(演大话西游唐僧的),我去问他问题,脱口而出:“唐老师,这题……”

  16、有一同事,有天我开车在路上车胎没气了,问哪里有充气的,同事说:“街上到处都是打胎的啊!”

  17、一次去麦当劳买甜桶,终于轮到了,我迫不及待的说:“给我两个滚筒!”没想到那服务员对我大声的说;“两个滚筒,四块钱!”

  18、俺碰到一个心仪已久的女孩从澡堂里出来,想套近乎,憋了半天憋出一句:“你洗澡啊,里面男的多不多啊?”

  19、有次去吃饭,结帐时对老板说:“老公!结帐!”当时老板娘就在旁边……

  20、有一老师通宵麻将,见黑板没擦,大怒:“今天谁做庄啊?黑板都不擦!”

  21、有一次我大叔见我小姑在搽大宝,突然大叫一声:“你皮肤这么好,还用护舒宝啊?”

  22、刚买了房子,兴奋中给一哥们打电话:‘我买房啦,不过就一毛房(忘说“坯”字了)还得装修。”哥们说:“就只有一厕所吗?那你住哪里啊?”

  23、被老师留下做作业,不会做就抄别人的,然后去办公室交作业,看见老师说:“我抄完了!”

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值