关闭

整数拆分问题(1)

标签: math整数拆分
156人阅读 评论(0) 收藏 举报
分类:


我们一起来看看这个问题,说实话,当时一看到这题的时候我怕了,不过想通后那叫一个爽啊!得意

题意:给你一个N,求满足1/X+1/Y=1/N的X,Y种类数


当你看到这题的时候,你会怎么做呢?

当时我看到第一反应就是先化简,因为1/X这个数肯定是比1小的小数,这个精度问题是个大问题,而且两个小数相加也不会完全等于那个小数。所以,想办法划成整数关系式。

两边同乘XY,得  Y+X=XY/N

转换,得        N=XY/(X+Y)

然后直接求吗?不不不,N是个整数,难道你就能保证右边除出来是整数吗?!

然后,绞尽脑汁,沉思,深呼吸,学下一休哥,忽然想到了!

你可以保证,当两个分数相加要等于一个分数时,两个分数的分母肯定都大于这个分数的分母,也就是X,Y>N

我们可以假设,X=N+u,Y=N+v, 其中u,v肯定都是大于0的整数

然后代入,简化出来,不可思议,N^2=uv

而一个整数N都是可以拆成 N=p1^a1 * p2^a2 *……*pn^an 的形式

此时N拆成两个数相乘的形式的种类个数是(a1+1)*(a2+1)*……*(an+1) 【不细讲了,你可以自己去写几个找找规律】

那么N^2=p1^2a1 * p2^2a2 *……*pn^2an

此时,种类数即为(2a1+1)*(2a2+1)*……*(2an+1)  

这个问题就迎刃而解了,接下来就是求底和幂的事情了。

需要特别注意的是当N<2时,是无法整数拆分的,也就是种类数为0


#include <iostream> 
#include <cmath> 
using namespace std; 
#define MAXI 20 
struct yinshu 
{ 
    int di; 
    int mi; 
}; 
struct Div 
{ 
    int xiangshu; 
    int xdi[MAXI]; 
    int xmi[MAXI]; 
}; 
Div getpN(int m); 
void vout(Div pN); 
yinshu getOne(int yin,int& m); 
int main() 
{ 
    int ncase,n,i; 
    cin>>ncase; 
    Div pN; 
    while(ncase--) 
    { 
        cin>>n; 
        pN=getpN(n); 
        vout(pN); 
    } 
    return 0; 
} 
Div getpN(int m) 
{ 
    int i,j; 
    Div pans; 
    yinshu x; 
    if(m<2) 
    { 
        pans.xdi[0]=1; 
        pans.xmi[0]=0; 
        pans.xiangshu=0; 
        return pans; 
    } 
    int uplimit=(int)sqrt(m*1.0); 
    i=2; 
    j=0; 
    while(i<=uplimit) 
    { 

        if(m%i==0) 
        { 
            x=getOne(i,m); 
            pans.xdi[j]=x.di; 
            pans.xmi[j]=x.mi; 
            j++; 
            uplimit=(int)sqrt(1.0*m); 
        } 
        i++; 
    } 
    if(m>1) 
    { 
        pans.xdi[j]=m; 
        pans.xmi[j]=1; 
        j++; 
    } 
    pans.xiangshu=j; 
    return pans; 
} 
void vout(Div pN) 
{ 
    int i; 
    int ans=1; 
    for(i=0;i<pN.xiangshu;i++) 
    { 
        ans*=(pN.xmi[i]*2+1); 
    } 
    cout<<ans<<endl; 
} 
yinshu getOne(int yin,int& m) 
{ 
    yinshu x; 
    x.di=yin; 
    x.mi=0; 
    while(m%yin==0) 
    { 
        x.mi++; 
        m/=yin; 
    } 
    return x; 
} 



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:12911次
    • 积分:597
    • 等级:
    • 排名:千里之外
    • 原创:48篇
    • 转载:5篇
    • 译文:0篇
    • 评论:1条
    最新评论