NOI 2010 COGS 468 BZOJ 2006 超级钢琴 RMQ 堆 => 乱搞 (脑洞要大大的)

感觉做这种乱搞式的题脑洞一定要大,不然想不出来解法。而且这种题解法经常有很多。然而自己脑洞小得可怜,也没想出来哪个新的解法,所以还是看了看题解按照大众解法写的这道题。 T^T

我们把多个区间构成的集合看成一个状态,(i, l, r, v, p)一个五元组,代表区间左端点为i,右端点在[l,r]中,这些区间中和最大的为v,这个和最大的区间的右端点是p。
我们把这些状态放进堆中,每次取出v最大的状态,然后“裂解”这个状态,变成(i, l, p-1, v, p)和(i, p+1, r, v, p),裂解之前的原状态中包含r-l+1个区间,取出最优的一个,分成两个小状态之后,两个小状态一共包含r-l个区间。如此,从堆中取k次就得到了答案。
最初放进堆中的状态当然是包含了所有区间的状态,即(i, i+L-1, i+R-1, v, p)枚举i即可。

那么,还剩下最后一个问题,解出v,p。因为i,l,r都是很容易得到的,而v,p不能直接得到。设A是原序列的前缀和,每次求v相当于求max{A[p] - A[i-1]} p ∈ [l,r],即max{A[p]} - A[i-1],这就变成了赤裸裸的RMQ问题,用ST算法解决很好。为了方便,这次ST算法中不直接保存最大值,保存最大值下标,方便求p。

自己还是比较喜欢这样没有固定算法的题的,它比较锻炼思(nao)考(dong)能(da)力(xiao),像这道题中这样的“状态”的设计,自己就想不出来,仍需要锻(kai)炼(nao)呐(dong)。T^T

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std;
typedef long long LL;

int N, K, L, R;
LL ans, f[500005][25], a[500005];

struct Node{
    int i, l, r, p; LL v;
    bool operator < (Node K) const
    {
        return v < K.v;
    }
    void calc()
    {
        int m = floor(log(r-l+1.0)/log(2.0));
        p = a[f[l][m]] > a[f[r-(1<<m)+1][m]] ? f[l][m] : f[r-(1<<m)+1][m];
        v = a[p] - a[i-1];
    }
};

priority_queue <Node> q;

int main()
{
    scanf("%d %d %d %d", &N, &K, &L, &R);
    for(int i = 1; i <= N; i++)
    {
        scanf("%lld", a+i); 
        a[i] += a[i-1]; f[i][0] = i;
    }
    for(int i = 1; (1<<i) <= N; i++)
    {
        for(int j = 1; j+(1<<i)-1 <= N; j++)
        {
            f[j][i] = f[j+(1<<i-1)][i-1];
            if(a[f[j][i]] < a[f[j][i-1]]) f[j][i] = f[j][i-1];
        }
    }

    for(int i = 1; i+L-1 <= N; i++)
    {
        Node t; t.i = i, t.l = i+L-1, t.r = min(i+R-1, N);
        t.calc(); q.push(t);
    }

    for(int i = 1; i <= K; i++)
    {
        Node nx, t = q.top(); q.pop();
        ans += t.v;

        nx = t; nx.r = t.p - 1;
        if(nx.r >= nx.l) {nx.calc(); q.push(nx);}
        nx = t; nx.l = t.p + 1;
        if(nx.r >= nx.l) {nx.calc(); q.push(nx);}
    }

    printf("%lld", ans);
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值