这篇文章主要记录《Facial Landmark Detection with Tweaked Convolutional Neural Networks》
此链接中,实现代码也一并给出。
在前一篇文章介绍过,人脸的特征点检测是一个回归问题。而研究这个问题的时候,主要关注两个内容:(1)人脸特征表示,(2)回归方法。
这篇论文同样是基于深度学习来进行特征点检测的。
这篇论文的脸部标记点检测训练使用的网络是Vanilla CNN,我们先来了解一下Vanilla CNN的设计。
Vanilla CNN是用来做脸部标记点坐标回归最先进的网络。被选的模型可以直接和前面的网络进行对比,这样就可以突出我们接下来要使用的TCNN的优势。下面就是Vanilla CNN的网络结构:输入是一张40*40*3的彩色照片,经过4个卷积层(CL1...CL4),每个卷积层后利用池化层(stride=2)抽取特征,再进入全连接层FC5,最后进入FC6输出2*m(m个标记点,m=5)个值:P=(p1,p2...p5)=(x1,y1,x2,y2......x5,y5)。
其中红色弧标记的地方就是TCNN进行改进的地方。
它使用的激活函数是双曲正切函数,并且在经过双曲正切函数之后进行了绝对值整流处理;最后损失函数使用双目距离进行标准化: