人脸特征点检测(二)——Tweaked CNN(TCNN)

本文探讨《Facial Landmark Detection with Tweaked Convolutional Neural Networks》中的TCNN,该模型基于Vanilla CNN进行改进,用于人脸特征点检测。TCNN采用双曲正切激活函数和绝对值整流,损失函数为双目距离标准化,通过fine-tuning提升精度,同时使用Alignment-sensitive data augmentation防止过拟合。实验表明,TCNN在有限数据下能取得高性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章主要记录《Facial Landmark Detection with Tweaked Convolutional Neural Networks

此链接中,实现代码也一并给出。


在前一篇文章介绍过,人脸的特征点检测是一个回归问题。而研究这个问题的时候,主要关注两个内容:(1)人脸特征表示,(2)回归方法。

这篇论文同样是基于深度学习来进行特征点检测的。


这篇论文的脸部标记点检测训练使用的网络是Vanilla CNN,我们先来了解一下Vanilla CNN的设计。

Vanilla CNN是用来做脸部标记点坐标回归最先进的网络。被选的模型可以直接和前面的网络进行对比,这样就可以突出我们接下来要使用的TCNN的优势。下面就是Vanilla CNN的网络结构:输入是一张40*40*3的彩色照片,经过4个卷积层(CL1...CL4),每个卷积层后利用池化层(stride=2)抽取特征,再进入全连接层FC5,最后进入FC6输出2*m(m个标记点,m=5)个值:P=(p1,p2...p5)=(x1,y1,x2,y2......x5,y5)


其中红色弧标记的地方就是TCNN进行改进的地方。


它使用的激活函数是双曲正切函数,并且在经过双曲正切函数之后进行了绝对值整流处理;最后损失函数使用双目距离进行标准化:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值