二叉搜索树

原创 2016年08月29日 14:59:46

二叉搜索树(BST)是一种树,他的特点是节点的子树不超过两个,且大小是有顺序的,任意一点节点其左孩子小于节点值小于右孩子,他的左右子树依然满足。二叉搜索树平均深度是O(log N),所以一般不担心栈空间被耗尽。

privata static calss BinNode<AnyTape>{
	BinNode(AnyTape element){
		this(element,null,null);
	}

	BinNode(AnyTape element,BinNode<AnyTape> left,BinNode<AnyTape> right){
		this.element = element;
		this.left = left;
		this.right = right;
	}
	AnyTape element;
	BinNode<AnyTape> left;
	BinNode<AnyTape> right;
}

这是二叉搜索树数据结构的定义

二叉树主要有查找,插入删除这几个操作,下面一一描述。


二叉搜索树的查找。顾名思义如果含有该节点就返回true,否则返回false。

废话不多说看代码理解。

privata boolean search(AnyType x,BinNode<AnyType> t){
	if(t == null)
		return false;
	int result = x.compareTo(t.element);  //将x与节点值比较
	if( result < 0)		//如果X小于节点值,则递归搜索节点的左子树
		return search(x,t.left);
	else if( result > 0)	//如果X大于节点值,则递归搜索节点的右子树
		return search(x,t.right);
	else    //如果X等于节点值,则存在,返回true
		return true;
}

接下来是常用的两个函数,findMin和findMax查找最小值和最大值,最小值就是沿左侧一直向下,直到没有左子树,最大值沿右侧一直向下,没有右子树为止。

private BinNode<AnyType> findMin(BinNode<AnyType> t){
	if(t == null)
		return;
	else if(t.left == null)
		return t;
	else
		return findMin(t.left)
}
findMin采用的是递归查找,如果节点左孩子为空,返回节点,这就是最小值,如果还有继续递归。

private BinNode<AnyType> findMax(BinNode<AnyType> t){
	if(t!= null){
		while(t.right != null)
			t = t.right;
	}
		return t;
}
findMax非递归实现


二叉搜索树的插入

private BinNode<AnyType> insert(AnyType x,BinNode<AnyType> t){
	if(t == null)
		return new BinNode<>(x,null,null);
	int result = x.compareTo(t.element);
	if( result < 0)		//如果X小于节点值,则在左子树插入,递归更新
		t.left = insert(x,t.left);
	else if( result > 0)	//如果X大于节点值,则在右子树插入,递归
		t.right = insert(x,t.right);
	return t;
}


二叉搜索树的删除,相对来说remove是较为困难的。如果节点是一片叶子,直接删去就好。如果节点有一个儿子,那就父节点调整自己的链绕过该节点删除。

如果是有两个儿子的节点,用右子树最小值代替节点,因为最小值不可能有左儿子,所以第二次remove就简单多了并递归删除节点。



第一幅图是具有一个儿子的节点4删除前后情况,删除4需要他的父节点2绕过4这个节点,直接将3变成2的右孩子,完成删除。

第二幅图是具有两个儿子的节点2删除前后情况,删除2需要在右子树里找到最小值3代替2,在删除原来3位置上的3,即完成了删除。

有时候删除次数不多,通常采用懒惰删除,当节点要删掉时,仍留在树中,只是被标记为删除。

private BinNode<AnyType> remove(AnyType x,BinNode<AnyType> t){
	if(t == null)
		return t;
	int result = x.compareTo(t.element);
	if( result < 0)		//如果X小于节点值,则在左子树删除,递归更新
		t.left = remove(x,t.left);
	else if( result > 0)	//如果X大于节点值,则在右子树删除,递归
		t.right = remove(x,t.right);
	else if( t.left != null && t.right != null){	//两儿子
		t.element = findMin(t.right).element;	//找到右子树最小值
		t.right = remove(t.element,t.right)		//删除右子树最小值原来的位置
	}
	else
		t = (t.left != null)?t.left:t.right;	//如果是一个儿子或者没有,哪个儿子不为空就返回哪个儿子
	return t;
}

值得注意的是,上面的操作第一步都是先测试是否是空树,否则会产生企图通过null引用访问数据域的NullPointerException异常。


二叉树性能分析

有N个关键码的集合,构成的二叉树有Cn2n/n+1种,平均搜索长度是ASLsucc = pi*ci/n,pi是内节点的值,ci是内节点所在的层次,ASLun=pj*cj/(n+1),pj是外节点的值,cj是外节点所在的层次

最优二叉树是权值最大的结点离根节点最近

版权声明:本文为博主原创文章,未经博主允许不得转载。

增强二叉搜索树

  • 2015年03月19日 18:00
  • 15KB
  • 下载

二叉搜索树

  • 2014年02月27日 08:18
  • 205KB
  • 下载

求二叉搜索树任一节点的前驱后继节点

二叉搜索树节点的前驱后继节点之前写过文章介绍了二叉搜索树以及其上的基本操作,但不包括求节点的前驱结点和后继节点。这是一个很老的问题了,首先看下某节点前驱和后继节点的定义。一个节点的 前驱结点:节点v...

最优二叉搜索树模范讲解

  • 2015年08月30日 21:07
  • 416KB
  • 下载

二叉搜索树程序

  • 2013年01月24日 14:45
  • 5.1MB
  • 下载

数据结构与算法分析(Java语言描述)(20)—— 二叉搜索树指定key的前驱、后继

前驱// -------------------------------------------------------------------- // 查找 key 的前驱 publi...

二叉搜索树

  • 2012年06月01日 14:11
  • 544KB
  • 下载

【剑指offer】二叉搜索树转双向链表

思路:这道题目关键在于不能创建新的节点,如不然,我们可以直接将二叉排序树中序遍历保存到一个数组中,而后再建立一个双性链表,将数据保存到双向链表里。 这里不能创建新节点,我们只能改变节点的指向左...

二叉搜索树

  • 2013年12月14日 18:57
  • 3KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二叉搜索树
举报原因:
原因补充:

(最多只允许输入30个字)