LIS&LICS

原创 2016年08月30日 23:25:49

定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
注意d中元素是单调递增的,下面要用到这个性质。
首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]


#include <stdio.h>
#include <string.h>
#include <iostream>

int a[1010];
int d[1010];
int kill(int len, int x)
{
    int b = 1, e = len;
    while(b <= e)
    {
        int mid = (b + e) / 2;
        if(x > d[mid])
        {
            b = mid + 1;
        }
        else{
            e = mid - 1;
        }
    }
    return b;
}
int main()
{
    int n;
    while(!scanf("%d", &n))
    {
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
        }
        d[1] = a[1];
        int len = 1;
        int j;
        for(int i = 2; i <= n; i++)
        {
            if(d[1] >= a[i])
            {
                j = 1;
            }
            else if(a[i] > d[len])
            {
                j = ++len;
            }
            else{
                j = kill(len, a[i]);
            }
            d[j] = a[i];
        }
        printf("%d\n", len);
    }
    return 0;
}

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>

using namespace std;
const int MAXN = 1010;
int n;
int a[MAXN];
int dp[MAXN];

int lis()
{

    memset(dp, 0, sizeof(int)*n);
    int len = 1;
    dp[0] = a[0];

    for (int i = 1; i < n; ++i)
    {
        int pos = lower_bound(dp, dp + len, a[i]) - dp;
        dp[pos] = a[i];
      //  printf("%d %d\n",dp[pos], len);
        len = max(len, pos + 1);

    }
    return len;
}
 int main()
 {
     scanf("%d", &n);
     for(int i = 0; i < n; i++)
     {
         scanf("%d", &a[i]);
     }
     //printf("%d\n",  lis());
     int len = lis();
     for(int i = 0; i < len; i++)
     {
         printf("%d ", dp[i]);
     }
 }

LICS

#include <string.h>
#include <stdio.h>
#include <iostream>

using namespace std;
int f[1005][1005], a[1005], b[1005], i, j, t, n1, n2, maxn;

int main()
{
    scanf("%d%d", &n1, &n2);
    for(i =0; i <= n1; i++)
    {
        scanf("%d", &a[i]);
    }
    for(i = 1; i <= n2; i++)
    {
        scanf("%d", &b[i]);
    }
    memset(f, 0, sizeof(f));


    for(i = 1; i <= n1; i++)
    {
        maxn = 0;
        for(j = 1; j <= n2; j++)
        {
            f[i][j] = f[i - 1][j];
            if(a[i] > b[j] && maxn < f[i - 1][j])
            {
                maxn = f[i - 1][j];
            }
            if(a[i] == b[j])
            {
                f[i][j] = maxn + 1;
            }
        }
    }
    maxn = 0;
    for(i = 1; i <= n2; i++)
    {
        if(maxn < f[n1][i])
        {
            maxn = f[n1][i];
        }
    }
    printf("%d\n", maxn);
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

HDU4512:吉哥系列故事——完美队形I(LICS)

Problem Description   吉哥这几天对队形比较感兴趣。   有一天,有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让...

hdoj 吉哥系列故事——完美队形I 4512 (LICS&dp)单调增回文数列长度 好题

吉哥系列故事——完美队形I Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) ...

poj2127Greatest Common Increasing Subsequence【LICS】

裸的LICS加上输出路径就把自己搞懵了;_; 一心想着记录父节点可以递归输出,然而远不用那么麻烦,最长递增公共子序列嘛==而且是二维的(废话),多加一个二维数组记录哈希了的前一个对应坐标,根据这个坐标...

HDOJ 题目4512 吉哥系列故事——完美队形I(LICS变形)

吉哥系列故事——完美队形I Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) ...

poj2127 Greatest Common Increasing Subsequence(LICS+路径)

5555校赛在即可是这路径输出我怎么也搞不好,搞了好久了,改天在搞吧。。。 #include #include #include #include #include using na...

HDU1423:Greatest Common Increasing Subsequence(LICS)

Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the leng...

CSU 1120 病毒(最长公共递增子序列LICS)

病毒Description 你有一个日志文件,里面记录着各种系统事件的详细信息。自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生)。 遗憾的是,你的系统被病毒感染了,日...

hdu 4512 吉哥系列故事——完美队形I(LICS)

吉哥系列故事——完美队形I Problem Description   吉哥这几天对队形比较感兴趣。   有一天,有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2]...

病毒(LICS 最长上升公共子序列)

你有一个日志文件,里面记录着各种系统事件的详细信息。自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生)。 遗憾的是,你的系统被病毒感染了,日志文件中混入了病毒生成的随机伪...
  • MIKASA3
  • MIKASA3
  • 2017年04月09日 11:41
  • 232

java最长上升连续子序列(LICS)

题目给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列。 (最长上升连续子序列可以定义为从右到左或从左到右的序列。)样例给定 [5, 4, 2,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LIS&LICS
举报原因:
原因补充:

(最多只允许输入30个字)