关闭

POJ 1061 青蛙的约会(扩展欧几里得算法)

标签: 扩展欧几里得算法
159人阅读 评论(0) 收藏 举报
分类:

网址:
http://poj.org/problem?id=1061


青蛙的约会
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 104392 Accepted: 20409
Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行”Impossible”
Sample Input

1 2 3 4 5
Sample Output

4


分析:
两只青蛙跳了t步,A的坐标为x+mt,B的坐标为y+nt。他们相遇的充要条件:x+mt-y-nt=0;
即:(n-m)t+Lp=x-y,L>0
设n-m=A’,x-y=B’,求满足A’t+Lp=B’的最小步数t ( t > 0 )即求一次同余方程A’t=B’(mod L)的最小正整数解,具体求解过程分为3步:
(1)写出方程(n-m)t+Lp=x-y,用扩展欧几里得函数求解,即
exgcd(n-m,&x,L,&y)
则这时X是一个解,但不是最后的解。
(2)若(x-y)%gcd(n-m,L)==0,则有解(指x和y有解)。
(3)有解后:设M=gcd(n-m,L),X=X(x-y)/M;
然后:(X%(L/M)+L/M)%(L/M)就是最后的解,也就是本题的t值;


AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

long long exgcd(long long m,long long &x,long long n,long long &y)
{
    long long x1,y1,x0,y0;
    x0=1,y0=0;
    x1=0,y1=1;
    long long r=(m%n+n)%n;
    long long q=(m-r)/n;
    x=0,y=1;
    while(r)
    {
        x=x0-q*x1;
        y-y0-q*y1;
        x0=x1;
        y0=y1;
        x1=x;
        y1=y;
        m=n;
        n=r;
        r=m%n;
        q=(m-r)/n;
    }
    return n;
}

int main()
{
    long long r,t,yy,x,y,m,n,l,ar,br,cr;
    while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
    {
            long long M=exgcd(n-m,ar,l,br);
            if((x-y)%M||m==n)
            {
                printf("Impossible\n");
            }
            else
            {
                long long s=l/M;
                ar=ar*((x-y)/M);
                ar=(ar%s+s)%s;
                printf("%lld\n",ar);
            }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:129790次
    • 积分:7122
    • 等级:
    • 排名:第3170名
    • 原创:596篇
    • 转载:1篇
    • 译文:0篇
    • 评论:58条
    最新评论
    Java栏目
    JAVA学习与有关心得