关闭

指南第三章 例题八 UVA 11235 Frequent values(RMQ问题)

标签: uva
108人阅读 评论(0) 收藏 举报
分类:

题目链接:http://7xjob4.com1.z0.glb.clouddn.com/31eeaedd10d813ea386928151f516e8a
中文题意:
给出一个非降序排列的整数数组a1,a2,…….,an。你的任务是对于一系列询问(i,j),回答ai,ai+1,…….aj中出现次数最多的值所出现的次数。
【输入格式】
输入包含多组数据。每组数据第一行为两个整数n和q(1<=n,q<=100000)。第二行包含n个非降序排列的整数a1,a2,……an(-100000<=ai<=100000)。以下q行每行包含两个整数i和j(1<=i<=j<=n),输入结束标志位n=0。
【输出格式】
对于每个查询,输出查询结果。

【分析】
RMQ算法,需要转化,把连着的数的起点,终点和长度记录下。
然后转化为RMQ问题就OK了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;

const int N=1e5+9;
struct RMQ//其实是把最小值变为最大值,原理一样
{
    int d[N][20];
    void init(const vector<int>& A)//A[i]表示连着的数的个数
    {
        int n=A.size();
        for(int i=0;i<n;i++)
        {
            d[i][0]=A[i];
        }
        for(int j=1;(1<<j)<=n;j++)
        {
            for(int i=0;i+(1<<j)-1<n;i++)
            {
                d[i][j]=max(d[i][j-1],d[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int query(int L,int R)//找出LR之间的最大值
    {
        int k=0;
        while((1<<(k+1))<=R-L+1)
            k++;
        return max(d[L][k],d[R-(1<<k)+1][k]);
    }
};

int a[N],num[N],l[N],r[N];
int n,q,L,R,ans;
RMQ rmq;
int main()
{
    while(scanf("%d",&n)&&n!=0)
    {
        scanf("%d",&q);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        a[0]=a[1];
        a[n+1]=a[n]+1;//预处理
        int start=1;
        vector<int>cnt;
        for(int i=1;i<=n+1;i++)//用三个数组对题目进行转化。
        {
            if(a[i]>a[i-1])
            {
                cnt.push_back(i-start);
                for(int j=start;j<i;j++)
                {
                    num[j]=cnt.size()-1;//j是第几个区间
                    l[j]=start;//区间的左端点
                    r[j]=i-1;//区间的右端点
                }
                start=i;
            }
        }
        rmq.init(cnt);
        while(q--)
        {
            scanf("%d%d",&L,&R);//把L,R进行转化
            if(num[L]==num[R])
                ans=R-L+1;
            else
            {
                ans=max(R-l[R]+1,r[L]-L+1);
                if(num[L]+1<num[R])
                {
                    ans=max(ans,rmq.query(num[L]+1,num[R]-1));//查找对应的最大值
                }
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:141981次
    • 积分:7288
    • 等级:
    • 排名:第3147名
    • 原创:600篇
    • 转载:1篇
    • 译文:0篇
    • 评论:58条
    最新评论
    Java栏目
    JAVA学习与有关心得