bzoj 4013: [HNOI2015]实验比较 树形dp+排列组合

题意

链接

分析

这题光是题目都看了我五分钟。。。

先用并查集把等号连接的两个并起来。
题目说明了这给的一定是一篇森林,那么我们只要加个虚根就变成一棵树了。
我们可以把等号看成是边,那么整个序列就被小于号分成了若干块。我们可以设f[i,j]表示节点i为根的子树排成的序列分成了j块的方案数。
枚举一个节点的两个儿子x和y,考虑如何把f[x]和f[y]合并起来。
枚举一个j和k,表示x子树的块数和y子树的块数,那么合并后的块数就在[max(j,k),j+k]之间,设为l。
那么 f[l]+=f[x,j]f[y,k]CjlCk(lj)j
为什么是后面那两个组合数呢?
我们要乘上的系数显然等价于给你j个黑球和k个白球,要求把这j+k个球放进l个盒子里面,每个盒子必须有球且黑球数量和白球数量都不能超过1个的方案数,随手推一下就可以得到后面那两个组合数了。

注意判掉有环的情况。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=105;
const int MOD=1000000007;

int n,m,fa[N],last[N],cnt,f[N][N],size[N],jc[N],ny[N],tmp[N];
struct edge{int to,next;}e[N];
struct data{int x,y;}a[N];
bool map[N][N],vis[N];

int find(int x)
{
    if (fa[x]==x) return x;
    fa[x]=find(fa[x]);
    return fa[x];
}

int ksm(int x,int y)
{
    int ans=1;
    while (y)
    {
        if (y&1) ans=(LL)ans*x%MOD;
        x=(LL)x*x%MOD;y>>=1;
    }
    return ans;
}

void addedge(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
}

int C(int n,int m)
{
    return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}

void dp(int x)
{
    if (!last[x]) f[x][0]=1;
    for (int i=last[x];i;i=e[i].next)
    {
        dp(e[i].to);
        if (!size[x])
        {
            for (int j=1;j<=size[e[i].to];j++) f[x][j]=f[e[i].to][j];
            size[x]=size[e[i].to];
        }
        else
        {
            for (int j=1;j<=size[e[i].to]+size[x];j++) tmp[j]=0;
            for (int j=1;j<=size[e[i].to];j++)
                for (int k=1;k<=size[x];k++)
                    for (int l=max(j,k);l<=j+k;l++)
                        tmp[l]=(tmp[l]+(LL)f[e[i].to][j]*f[x][k]%MOD*C(l,j)%MOD*C(j,k-l+j)%MOD)%MOD;
            size[x]+=size[e[i].to];
            for (int j=1;j<=size[x];j++) f[x][j]=tmp[j];
        }
    }
    size[x]++;
    for (int j=size[x];j;j--) f[x][j]=f[x][j-1];
    f[x][0]=0;
}

bool check(int x)
{
    if (vis[x]) return 0;
    vis[x]=1;
    for (int i=last[x];i;i=e[i].next) if (!check(e[i].to)) return 0;
    return 1;
}

int main()
{
    scanf("%d%d",&n,&m);
    jc[0]=ny[0]=1;
    for (int i=1;i<=n;i++) fa[i]=i,jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=ksm(jc[i],MOD-2);
    for (int i=1;i<=m;i++)
    {
        char ch[2];
        scanf("%d%s%d",&a[i].x,ch,&a[i].y);
        if (ch[0]=='=')
        {
            if (find(a[i].x)!=find(a[i].y)) fa[find(a[i].x)]=find(a[i].y);
            i--;m--;
        }
    }
    for (int i=1;i<=m;i++)
    {
        int x=find(a[i].x),y=find(a[i].y);
        if (!map[x][y]) addedge(x,y),vis[y]=1,map[x][y]=1;
    }
    for (int i=1;i<=n;i++) if (!vis[i]&&fa[i]==i) addedge(0,i);
    for (int i=1;i<=n;i++)
    {
        memset(vis,0,sizeof(vis));
        if (!check(i))
        {
            putchar('0');
            return 0;
        }
    }
    dp(0);
    int ans=0;
    for (int i=1;i<=size[0];i++) ans=(ans+f[0][i])%MOD;
    printf("%d",ans);
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值